Loading...
Search for: control-purpose
0.005 seconds

    Evaluation of planing craft maneuverability using mathematical modeling under the action of the rudder

    , Article Scientia Iranica ; Volume 24, Issue 1 , 2017 , Pages 293-301 ; 10263098 (ISSN) Hajizadeh, S ; Seif, M. S ; Mehdigholi, H ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    In the recent years, different mathematical models have been suggested for maneuvering of displacement vessels, which are capable to estimate maneuvering of the vessel with acceptable precision. But, simulation of planing craft maneuverability through a mathematical model has not been developed yet. In this paper, a mathematical model is developed for maneuvering of the planing craft by including the rudder forces and moments. Different maneuvers, such as straight-line stability, course keeping, and turning circle, are executed through the mathematical model. Simulation results are validated with the published experimental results and it is shown that they are in good agreement. Finally, the... 

    Fast fault detection method for modular multilevel converter semiconductor power switches

    , Article IET Power Electronics ; Volume 9, Issue 2 , 2016 , Pages 165-174 ; 17554535 (ISSN) Haghnazari, S ; Khodabandeh, M ; Zolghadri, M. R ; Sharif University of Technology
    Institution of Engineering and Technology  2016
    Abstract
    This study proposes a new fault detection method for modular multilevel converter (MMC) semiconductor power switches. While in common MMCs, the cells capacitor voltages are measured directly for control purposes, in this study voltage measurement point changes to the cell output terminal improving fault diagnosis ability. Based on this measurement reconfiguration, a novel fault detection algorithm is designed for MMCs semiconductor power switches. The open circuit and short circuit faults are detected based on unconformity between modules output voltage and switching signals. Simulation and experimental results confirm accurate and fast operation of the proposed method in faulty cell... 

    Following, surrounding and hunting an escaping target by stochastic control of swarm in multi-agent systems

    , Article Proceedings - 2011 2nd International Conference on Control, Instrumentation and Automation, ICCIA 2011, 27 December 2011 through 29 December 2011 ; December , 2012 , Pages 576-581 ; Print ISBN: 9781467316897 Ghanaatpishe, M ; Mousavi, S. M. A ; Abedini, M ; Salarieh, H ; Sharif University of Technology
    IEEE Computer Society  2012
    Abstract
    In this paper, we have proposed a quasi-static model of a multi-agent system as police agents with and without non-holonomic constraints for agents' motion. We also consider an active thief agent which has stochastic dynamic equation of motion. Our control purpose is that these police agents pursue the thief agent and the geometrical center of them aims the thief agent current position. Also in the motion of the police agents for surrounding the thief, the unity of the swarm should be preserved and collision between them should be avoided. Police agents do not have all of the dynamic states of the thief agent's motion andalso those that are available and observable for the police agents are... 

    Estimation of muscle force with EMG signals using Hammerstein-Wiener model

    , Article IFMBE Proceedings, 20 June 2011 through 23 June 2011 ; Volume 35 IFMBE , June , 2011 , Pages 157-160 ; 16800737 (ISSN) ; 9783642217289 (ISBN) Abbasi Asl, R ; Khorsandi, R ; Farzampour, S ; Zahedi, E ; Sharif University of Technology
    2011
    Abstract
    Estimation of muscle force is needed for monitoring or control purposes in many studies and applications that include direct human involvement such as control of prosthetic arms and human-robot interaction. A new model is introduced to estimate the force of muscle from the EMG signals. Estimation is based on Hammerstein-Wiener Model which consists of three blocks. These blocks are used to describe the nonlinearity of input and output and linear behavior of the model. The nonlinear network is designed base on the sigmoid network. The introduced model is trained by some data sets which are recorded from different people and tested by some other data sets. The simulation results show low error... 

    A periodic solution for friction drive microrobots based on the iteration perturbation method

    , Article Scientia Iranica ; Volume 18, Issue 3 B , 2011 , Pages 368-374 ; 10263098 (ISSN) Kamali Eigoli, A ; Vossoughi, G. R ; Sharif University of Technology
    2011
    Abstract
    The friction drive principle, which is based on the superposition of two synchronized perpendicular vibrations at the interface of the robot and the work floor, plays a fundamental role in the locomotion of miniaturized robots. In this paper, the iteration perturbation method proposed by He is used to generate a periodic solution for this type of friction drive microrobot. The equation of motion for the system reveals a parametrically excited oscillator with discontinuity, the elastic force term for which is proportional to a signum function. The obtained solutions are in excellent agreement with those achieved from numerical integration and experiments reported in the literature. Results... 

    Different optimization criteria for vehicle seat suspension control: Position versus acceleration

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009, 30 August 2009 through 2 September 2009 ; Volume 6 , August–September , 2010 , Pages 1053-1059 ; 9780791849033 (ISBN) Hashemnia, S ; Ahmadian, M. T ; Sharif University of Technology
    2010
    Abstract
    This paper addresses the effect of different optimization criteria for the control purpose of vehicle suspension. In the present study, active vibration control system for a 5 degree-of-freedom (DoF) pitch-plane suspension model with bounce and pitch motions is investigated. In the proposed vehicle model, the impact of the wheel-axle-brake assemblies' masses is also considered. The developed model is controlled using a fuzzy logic controller (FLC) to minimize the vibration of the driver's seat. The controller is designed to control the applied force to the seat. Furthermore, in order to determine the optimal value of fuzzy system parameters, genetic algorithm (GA) optimization search is used... 

    On the power of power analysis in the real world: A complete break of the KeeLoq code hopping scheme

    , Article 28th Annual International Cryptology Conference, CRYPTO 2008, Santa Barbara, CA, 17 August 2008 through 21 August 2008 ; Volume 5157 LNCS , 2008 , Pages 203-220 ; 03029743 (ISSN) ; 3540851739 (ISBN); 9783540851738 (ISBN) Eisenbarth, T ; Kasper, T ; Moradi, A ; Paar, C ; Salmasizadeh, M ; Manzuri Shalmani, M. T ; Sharif University of Technology
    2008
    Abstract
    KeeLoq remote keyless entry systems are widely used for access control purposes such as garage openers or car door systems. We present the first successful differential power analysis attacks on numerous commercially available products employing KeeLoq code hopping. Our new techniques combine side-channel cryptanalysis with specific properties of the KeeLoq algorithm. They allow for efficiently revealing both the secret key of a remote transmitter and the manufacturer key stored in a receiver. As a result, a remote control can be cloned from only ten power traces, allowing for a practical key recovery in few minutes. After extracting the manufacturer key once, with similar techniques, we... 

    Neuromuscular control of the point to point and oscillatory movements of a sagittal arm with the actor-critic reinforcement learning method

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 8, Issue 2 , 2005 , Pages 103-113 ; 10255842 (ISSN) Golkhou, V ; Parnianpour, M ; Lucas, C ; Sharif University of Technology
    2005
    Abstract
    In this study, we have used a single link system with a pair of muscles that are excited with alpha and gamma signals to achieve both point to point and oscillatory movements with variable amplitude and frequency. The system is highly nonlinear in all its physical and physiological attributes. The major physiological characteristics of this system are simultaneous activation of a pair of nonlinear musclelike- actuators for control purposes, existence of nonlinear spindle-like sensors and Golgi tendon organlike sensor, actions of gravity and external loading. Transmission delays are included in the afferent and efferent neural paths to account for a more accurate representation of the reflex... 

    Inferential closed-loop control of particle size and molecular weight distribution in emulsion polymerization of styrene

    , Article Polymer Engineering and Science ; Volume 50, Issue 12 , 2010 , Pages 2306-2320 ; 00323888 (ISSN) Vafa, E ; Shahrokhi, M ; Abedini, H ; Sharif University of Technology
    Abstract
    In this work, simultaneous inferential control of particle size distribution (PSD) and molecular weight distribution (MWD) in a semi-batch emulsion polymerization reactor of styrene has been addressed. Using a comprehensive dynamic model for PSD and MWD predictions and performing a sensitivity analysis, it has been revealed that free surfactant and chain transfer agent (CTA) concentrations in the reactor are the most suitable candidates for inferential control of PSD and MWD, respectively. To control concentrations of these species in the reactor, their inlet feed flow rates are used as manipulated variables. It is assumed that the concentration of CTA is measured infrequently and therefore... 

    Different optimization criteria for vehicle seat suspension control: Position versus acceleration

    , Article Proceedings of the ASME Design Engineering Technical Conference, 30 August 2009 through 2 September 2009, San Diego, CA ; Volume 6 , 2009 , Pages 1053-1059 ; 9780791849033 (ISBN) Hashemnia, S ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    This paper addresses the effect of different optimization criteria for the control purpose of vehicle suspension. In the present study, active vibration control system for a 5 degree-of-freedom (DoF) pitch-plane suspension model with bounce and pitch motions is investigated. In the proposed vehicle model, the impact of the wheel-axle-brake assemblies' masses is also considered. The developed model is controlled using a fuzzy logic controller (FLC) to minimize the vibration of the driver's seat. The controller is designed to control the applied force to the seat. Furthermore, in order to determine the optimal value of fuzzy system parameters, genetic algorithm (GA) optimization search is used...