Loading...
Search for: controlled-study
0.016 seconds
Total 652 records

    Adsorption and sustained release of doxorubicin from N-carboxymethyl chitosan/polyvinyl alcohol/poly(ε-caprolactone) composite and core-shell nanofibers

    , Article Journal of Drug Delivery Science and Technology ; Volume 67 , 2022 ; 17732247 (ISSN) Abasalta, M ; Asefnejad, A ; Khorasani, M. T ; Saadatabadi, A. R ; Irani, M ; Sharif University of Technology
    Editions de Sante  2022
    Abstract
    The core-shell nanofibers, produced by the coaxial electrospinning method, are good candidates for delivery of anticancer drugs due to their continuous release without initial burst release. In this work, the N-carboxymethyl chitosan (N-CMCS)-polyvinyl alcohol (PVA)/poly(ε-caprolactone) (PCL) composite and core-shell nanofibers were prepared by two-nozzle and coaxial electrospinning techniques, respectively. Doxorubicin (DOX) as an anticancer drug was loaded into the N-CMCS/PVA/PCL nanofibers fabricated by two-nozzle and coaxial electrospinning. The performance of nanofibers was compared for the adsorption and controlled release of DOX against MCF-7 breast cancer cells death in vitro. The... 

    Fast wavelet-based photoacoustic microscopy

    , Article Journal of the Optical Society of America A: Optics and Image Science, and Vision ; Volume 38, Issue 11 , 2021 , Pages 1673-1680 ; 10847529 (ISSN) Abbasi, H ; Mostafavi, S. M ; Kavehvash, Z ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    A novel photoacoustic microscopy (PAM) structure, based on Haar wavelet patterns, is proposed in this paper. Its main goal is to mitigate the PAM imaging resolution and thus the time of its sampling process without compromising the image quality. Owing to the intrinsic nature of wavelet transform, this structure collects spatial and spectral components simultaneously, and this feature speeds up the sampling process by 33%. The selection of these patterns helps in better control of required conditions, such as multi-resolution imaging, to guarantee adequate image quality in comparison to previous microscopic structures. Simulation results prove the superior quality of the proposed approach... 

    Fast wavelet-based photoacoustic microscopy

    , Article Journal of the Optical Society of America A: Optics and Image Science, and Vision ; Volume 38, Issue 11 , 2021 , Pages 1673-1680 ; 10847529 (ISSN) Abbasi, H ; Mostafavi, S. M ; Kavehvash, Z ; Sharif University of Technology
    The Optical Society  2021
    Abstract
    A novel photoacoustic microscopy (PAM) structure, based on Haar wavelet patterns, is proposed in this paper. Its main goal is to mitigate the PAM imaging resolution and thus the time of its sampling process without compromising the image quality. Owing to the intrinsic nature of wavelet transform, this structure collects spatial and spectral components simultaneously, and this feature speeds up the sampling process by 33%. The selection of these patterns helps in better control of required conditions, such as multi-resolution imaging, to guarantee adequate image quality in comparison to previous microscopic structures. Simulation results prove the superior quality of the proposed approach... 

    Beyond hierarchical mixed nickel-cobalt hydroxide and ferric oxide formation onto the green carbons for energy storage applications

    , Article Journal of Colloid and Interface Science ; Volume 593 , 2021 , Pages 182-195 ; 00219797 (ISSN) Abbasi, S ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    To attain superior energy density concurrently with high power density, high-performance supercapacitors have been developed. Herein an innovative strategy has been adopted to fabricate unique binder-free electrodes composed of a unique porous structure of binary metal carbonate hydroxide nanomace-decorated hydrothermal porous carbon spheres (PCSs). Hierarchical nickel-cobalt carbonate hydroxide (NiCOCH) nanomaces, directly grown on PCSs, are used as positive electrodes for supercapacitors fabrication. Furthermore, Fe2O3@PCS composites, having benefits of highly reversible redox reaction in the negative potential window and highly porous structure, are employed as the negative electrode in... 

    Beyond hierarchical mixed nickel-cobalt hydroxide and ferric oxide formation onto the green carbons for energy storage applications

    , Article Journal of Colloid and Interface Science ; Volume 593 , 2021 , Pages 182-195 ; 00219797 (ISSN) Abbasi, S ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    To attain superior energy density concurrently with high power density, high-performance supercapacitors have been developed. Herein an innovative strategy has been adopted to fabricate unique binder-free electrodes composed of a unique porous structure of binary metal carbonate hydroxide nanomace-decorated hydrothermal porous carbon spheres (PCSs). Hierarchical nickel-cobalt carbonate hydroxide (NiCOCH) nanomaces, directly grown on PCSs, are used as positive electrodes for supercapacitors fabrication. Furthermore, Fe2O3@PCS composites, having benefits of highly reversible redox reaction in the negative potential window and highly porous structure, are employed as the negative electrode in... 

    Novel force–displacement control passive finite element models of the spine to simulate intact and pathological conditions; comparisons with traditional passive and detailed musculoskeletal models

    , Article Journal of Biomechanics ; Volume 141 , 2022 ; 00219290 (ISSN) Abbasi-Ghiri, A ; Ebrahimkhani, M ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Passive finite element (FE) models of the spine are commonly used to simulate intact and various pre- and postoperative pathological conditions. Being devoid of muscles, these traditional models are driven by simplistic loading scenarios, e.g., a constant moment and compressive follower load (FL) that do not properly mimic the complex in vivo loading condition under muscle exertions. We aim to develop novel passive FE models that are driven by more realistic yet simple loading scenarios, i.e., in vivo vertebral rotations and pathological-condition dependent FLs (estimated based on detailed musculoskeletal finite element (MS-FE) models). In these novel force–displacement control FE models,... 

    Determination of spermine and spermidine in meat with a ratiometric fluorescence nanoprobe and a combinational logic gate

    , Article Food Chemistry ; Volume 384 , 2022 ; 03088146 (ISSN) Abbasi-Moayed, S ; Bigdeli, A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A ratiometric fluorescent nanoprobe is developed with a wide color variation for visual determination of spermine (SP) and spermidine (SD) in meat samples. The green emission provided from the combination of yellow emissive quantum dots and blue emissive carbon dots turns into pink when SP or SD are present. The results show that the developed sensor has good linearity in the range of 0.5–10 and 0.5–80 µM for SP and SD and suitable detection limits were achieved including 0.2 and 2.1 µM for SP and SD. The probe was highly selective in the presence of amino acids and other biogenic amines. RGB indices were extracted to build a combinational logic gate for visual and simultaneous detection of... 

    Synthesis of new hybrid nanomaterials: Promising systems for cancer therapy

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 6 , 2011 , Pages 806-817 ; 15499634 (ISSN) Adeli, M ; Kalantari, M ; Parsamanesh, M ; Sadeghi, E ; Mahmoudi, M ; Sharif University of Technology
    2011
    Abstract
    Polyrotaxanes consisting of cyclodextrin rings, polyethylene glycol axes and quantum dot (QD) stoppers were synthesized and characterized. The molecular self-assembly of polyrotaxanes led to spindlelike nano-objects whose shape, size and position were dominated by QD stoppers. Due to their well-defined molecular self-assemblies, carbohydrate backbone, high functionality and several types of functional groups together with the high luminescence yield, synthesized hybrid nanostructures were recognized as promising candidates for biomedical applications. The potential applications of the molecular self-assemblies as drug-delivery systems was investigated by conjugation of doxorubicin (DOX) to... 

    Predictive models for permeability and diffusivity of CH4 through imidazolium-based supported ionic liquid membranes

    , Article Journal of Membrane Science ; Volume 371, Issue 1-2 , 2011 , Pages 127-133 ; 03767388 (ISSN) Adibi, M ; Barghi, S.H ; Rashtchian, D ; Sharif University of Technology
    Abstract
    Experimental permeability and diffusivity values for CO2 and CH4 through imidazolium-based ionic liquid 1-hexyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide ([hmim][Tf2N]) were determined in the temperature range of 300-320K using temperature correction factor defined in our previous study. According to literature, experimental values of permeability and diffusivity obtained in this study for CO2 in [hmim][Tf2N], showed good agreement with predictive models reported by other researchers. In addition, experimental values of permeability and diffusivity for CH4 in [hmim][Tf2N] as a function of pressure have been reported in this study. Considering the results of present study and... 

    Directed functional networks in Alzheimer's disease: disruption of global and local connectivity measures

    , Article IEEE Journal of Biomedical and Health Informatics ; Volume 21, Issue 4 , 2017 , Pages 949-955 ; 21682194 (ISSN) Afshari, S ; Jalili, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    Techniques available in graph theory can be applied to signals recorded from human brain. In network analysis of EEG signals, the individual nodes are EEG sensor locations and the edges correspond to functional relations between them that are extracted from EEG time series. In this paper, we study EEG-based directed functional networks in Alzheimer's disease (AD). To this end, directed connectivity matrices of 25 AD patients and 26 healthy subjects are processed and a number of meaningful graph theory metrics are studied. Our data show that functional networks of AD brains have significantly reduced global connectivity in alpha and beta bands (P < 0.05). The AD brains have significantly... 

    Diffuse emissions of particles from iron ore piles by wind erosion

    , Article Environmental Engineering Science ; Volume 28, Issue 5 , 2011 , Pages 333-339 ; 10928758 (ISSN) Afshar Mohajer, N ; Torkian, A ; Sharif University of Technology
    Abstract
    Industrial air pollution from point and nonpoint sources of steel complexes has drawn increasingly more public attention in the past decades. Previous research efforts have been more concentrated on point sources of particulate emissions from these complexes. However, wind-induced particulate emissions from iron ore storage piles not only result in ambient air pollution but also increase economic adverse effects to the industry by loss of process raw materials. Experiments were conducted to assess the impact of wind speed and humidity on particulate emission rates from iron ore storage piles. A wind-generating system and specific iron ore, experimental piles (L:W:H of 30:11.5:5 cm) were... 

    Interpolation of orientation distribution functions in diffusion weighted imaging using multi-tensor model

    , Article Journal of Neuroscience Methods ; Volume 253 , 2015 , Pages 28-37 ; 01650270 (ISSN) Afzali, M ; Fatemizadeh, E ; Soltanian Zadeh, H ; Sharif University of Technology
    Abstract
    Background: Diffusion weighted imaging (DWI) is a non-invasive method for investigating the brain white matter structure and can be used to evaluate fiber bundles. However, due to practical constraints, DWI data acquired in clinics are low resolution. New method: This paper proposes a method for interpolation of orientation distribution functions (ODFs). To this end, fuzzy clustering is applied to segment ODFs based on the principal diffusion directions (PDDs). Next, a cluster is modeled by a tensor so that an ODF is represented by a mixture of tensors. For interpolation, each tensor is rotated separately. Results: The method is applied on the synthetic and real DWI data of control and... 

    Diagnosis of early Alzheimer's disease based on EEG source localization and a standardized realistic head model

    , Article IEEE Journal of Biomedical and Health Informatics ; Volume 17, Issue 6 , 2013 , Pages 1039-1045 ; 21682194 (ISSN) Aghajani, H ; Zahedi, E ; Jalili, M ; Keikhosravi, A ; Vahdat, B. V ; Sharif University of Technology
    2013
    Abstract
    In this paper, distributed electroencephalographic (EEG) sources in the brain have been mapped with the objective of early diagnosis of Alzheimer's disease (AD). To this end, records from a montage of a high-density EEG from 17 early AD patients and 17 matched healthy control subjects were considered. Subjects were in eyes-closed, resting-state condition. Cortical EEG sources were modeled by the standardized low-resolution brain electromagnetic tomography (sLORETA) method. Relative logarithmic power spectral density values were obtained in the four conventional frequency bands (alpha, beta, delta, and theta) and 12 cortical regions. Results show that in the left brain hemisphere, the theta... 

    Nonlinear adaptive control method for treatment of uncertain hepatitis B virus infection

    , Article Biomedical Signal Processing and Control ; Volume 38 , 2017 , Pages 174-181 ; 17468094 (ISSN) Aghajanzadeh, O ; Sharifi, M ; Tashakori, S ; Zohoor, H ; Sharif University of Technology
    Abstract
    In this paper, a nonlinear adaptive control method is presented for the treatment of the Hepatitis B Virus (HBV) infection. Nonlinear dynamics of the HBV, modeling uncertainties and three state variables (the numbers of uninfected and infected cells and free viruses) are taken into account. The proposed control law is designed for the antiviral drug input such that the number of free viruses and consequently the number of infected cells decrease to the desired values. An adaptation law is also presented to overcome modeling uncertainties by updating estimations of the system parameters during the treatment period. The stability of the process and convergence to desired state values are... 

    Coupled artificial neural networks to estimate 3D whole-body posture, lumbosacral moments, and spinal loads during load-handling activities

    , Article Journal of Biomechanics ; Volume 102 , 2020 Aghazadeh, F ; Arjmand, N ; Nasrabadi, A. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Biomechanical modeling approaches require body posture to evaluate the risk of spine injury during manual material handling. The procedure to measure body posture via motion-analysis techniques as well as the subsequent calculations of lumbosacral moments and spine loads by, respectively, inverse-dynamic and musculoskeletal models are complex and time-consuming. We aim to develop easy-to-use yet accurate artificial neural networks (ANNs) that predict 3D whole-body posture (ANNposture), segmental orientations (ANNangle), and lumbosacral moments (ANNmoment) based on our measurements during load-handling activities. Fifteen individuals each performed 135 load-handling activities by reaching (0... 

    Kinematic analysis of dynamic lumbar motion in patients with lumbar segmental instability using digital videofluoroscopy

    , Article European Spine Journal ; Volume 18, Issue 11 , 2009 , Pages 1677-1685 ; 09406719 (ISSN) Ahmadi, A ; Maroufi, N ; Behtash, H ; Zekavat, H ; Parnianpour, M ; Sharif University of Technology
    2009
    Abstract
    The study design is a prospective, case-control. The aim of this study was to develop a reliable measurement technique for the assessment of lumbar spine kinematics using digital video fluoroscopy in a group of patients with low back pain (LBP) and a control group. Lumbar segmental instability (LSI) is one subgroup of nonspecific LBP the diagnosis of which has not been clarified. The diagnosis of LSI has traditionally relied on the use of lateral functional (flexion-extension) radiographs but use of this method has proven unsatisfactory. Fifteen patients with chronic low back pain suspected to have LSI and 15 matched healthy subjects were recruited. Pulsed digital videofluoroscopy was used... 

    New pathways of stability for NHCs derived from azole, di-azole, n-tetrazole, and ab-tetrazole, by DFT

    , Article Journal of Molecular Modeling ; Volume 26, Issue 11 , 2020 Ahmadi, A ; Kassaee, M. Z ; Ayoubi Chianeh, M ; Fattahi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    We have investigated the pathways of stability for NHCs derived from azole, di-azole, n-tetrazole, and ab-tetrazole (1a, 2a, 3a, and 4a, respectively), at the M06/6-311++G** level of theory. Optimization and vibrational frequency calculations of ground states (GS) and transition states (TS) are performed to identify Gibbs free energies and nature of stationary points, respectively. Two possible pathways of stability for 1a-4a are compared and contrasted which entail dimerization through hydrogen bonding (HB) and covalent bonding (CB). The CB pathway comprises head to head (HH) and head to tail (HT) dimerizations. Plausible reaction profiles are illustrated for 1a-4a along with the mechanism... 

    Deep sparse graph functional connectivity analysis in AD patients using fMRI data

    , Article Computer Methods and Programs in Biomedicine ; Volume 201 , 2021 ; 01692607 (ISSN) Ahmadi, H ; Fatemizadeh, E ; Motie Nasrabadi, A ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Functional magnetic resonance imaging (fMRI) is a non-invasive method that helps to analyze brain function based on BOLD signal fluctuations. Functional Connectivity (FC) catches the transient relationship between various brain regions usually measured by correlation analysis. The elements of the correlation matrix are between -1 to 1. Some of them are very small values usually related to weak and spurious correlations due to noises and artifacts. They can not be concluded as real strong correlations between brain regions and their existence could make a misconception and leads to fake results. It is crucial to make a conclusion based on reliable and informative correlations. In order to... 

    Deep sparse graph functional connectivity analysis in AD patients using fMRI data

    , Article Computer Methods and Programs in Biomedicine ; Volume 201 , 2021 ; 01692607 (ISSN) Ahmadi, H ; Fatemizadeh, E ; Motie Nasrabadi, A ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Functional magnetic resonance imaging (fMRI) is a non-invasive method that helps to analyze brain function based on BOLD signal fluctuations. Functional Connectivity (FC) catches the transient relationship between various brain regions usually measured by correlation analysis. The elements of the correlation matrix are between -1 to 1. Some of them are very small values usually related to weak and spurious correlations due to noises and artifacts. They can not be concluded as real strong correlations between brain regions and their existence could make a misconception and leads to fake results. It is crucial to make a conclusion based on reliable and informative correlations. In order to... 

    Identifying brain functional connectivity alterations during different stages of Alzheimer’s disease

    , Article International Journal of Neuroscience ; Volume 132, Issue 10 , 2022 , Pages 1005-1013 ; 00207454 (ISSN) Ahmadi, H ; Fatemizadeh, E ; Motie Nasrabadi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Purpose: Alzheimer's disease (AD) starts years before its signs and symptoms including the dementia become apparent. Diagnosis of the AD in the early stages is important to reduce the speed of brain decline. Aim of the study: Identifying the alterations in the functional connectivity of the brain during the disease stages is among the main important issues in this regard. Therefore, in this study, the changes in the functional connectivity during the AD stages were analyzed. Materials and methods: By employing the functional magnetic resonance imaging (fMRI) data and graph theory, weighted undirected graphs of the whole-brain and default mode network (DMN) network were investigated...