Loading...
Search for: controller-performance
0.007 seconds
Total 38 records

    Implementation and intelligent gain tuning feedback–based optimal torque control of a rotary parallel robot

    , Article JVC/Journal of Vibration and Control ; Volume 28, Issue 19-20 , 2022 , Pages 2678-2695 ; 10775463 (ISSN) Tajdari, F ; Ebrahimi Toulkani, N ; Sharif University of Technology
    SAGE Publications Inc  2022
    Abstract
    Aiming at operating optimally minimizing error of tracking and designing control effort, this study presents a novel generalizable methodology of an optimal torque control for a 6-degree-of-freedom Stewart platform with rotary actuators. In the proposed approach, a linear quadratic integral regulator with the least sensitivity to controller parameter choices is designed, associated with an online artificial neural network gain tuning. The nonlinear system is implemented in ADAMS, and the controller is formulated in MATLAB to minimize the real-time tracking error robustly. To validate the controller performance, MATLAB and ADAMS are linked together and the performance of the controller on the... 

    Control performance enhancement of gas turbines in the minimum command selection strategy

    , Article ISA Transactions ; Volume 112 , 2021 , Pages 186-198 ; 00190578 (ISSN) Eslami, M ; Banazadeh, A ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2021
    Abstract
    Three novel methods, named α, ζ and ϵ, are suggested in this paper to recover the performance loss during switching in the gas turbine control systems. The Minimum Command Selection (MCS) in the gas turbine control systems prompts this performance loss. Any step towards more productivity with less aging factors have a great impact on the gas turbine's lifetime profit and vice versa. Although many hardware upgrades have been studied and applied to accomplish this, in many cases a low-risk manipulation in the software may yield equivalent achievement. State of the art gas turbine control systems are supposed to handle various forms of disturbances, several operation modes and relatively high... 

    L1 Adaptive integrated guidance and control for flexible hypersonic flight vehicle in the presence of dynamic uncertainties

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 235, Issue 8 , 2021 , Pages 1521-1531 ; 09596518 (ISSN) Khankalantary, S ; Rezaee Ahvanouee, H ; Mohammadkhani, H ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    In this article, an integrated guidance and control design method for general nonlinear flexible hypersonic flight vehicles in the presence of dynamic uncertainties based on the (Formula presented.) adaptive state feedback control approach is presented. Initially, the 6-degree-of-freedom integrated guidance and autopilot dynamic model is organized using the combination of flexible uncertain hypersonic flight vehicle dynamic model and hypersonic flight vehicle-target relative motion model whereas aerodynamic and model uncertainties, cross-coupling effects, and disturbances are considered. The proposed integrated guidance and control method based on (Formula presented.) adaptive control scheme... 

    Direct synthesis of fixed-order multi-objective controllers

    , Article Optimal Control Applications and Methods ; Volume 41, Issue 3 , 2020 , Pages 849-865 Abdolahi, A ; Babazadeh, M ; Nobakhti, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    This paper introduces a new methodology for the design of fixed-order multi-objective output feedback controllers. The problem comprises a set of linear matrix inequalities and an additional rank constraint. The primary idea is to classify convex subsets of the set of rank constrained matrices in such formulations, based on which two noniterative and relatively fast methods are developed. The proposed methods require solving a convex optimization problem at each step and can be applied with any weighted summation of design objectives such as (Formula presented.) performance, (Formula presented.) performance, passivity, and regional pole assignment. Several benchmark systems with performance... 

    A multi-model control of nonlinear systems: a cascade decoupled design procedure based on stability and performance

    , Article Transactions of the Institute of Measurement and Control ; Volume 42, Issue 7 , 2020 , Pages 1271-1280 Ahmadi, M ; Rikhtehgar, P ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    Recently, the multi-model controllers design was proposed in the literature based on integrating of the stability and performance criteria. Although these methods overcome the redundancy problem, the decomposition step is very complex and time consuming. In this paper, a cascade design of multi-model control is presented that is made from two sequential steps. In the first step, the nonlinear system is decomposed into a set of linear subsystems by just considering the stability criterion. In this step, the gap metric is used as a smart tool to measure the distance between linear subsystems. While the closed-loop stability is gained through the first step, the performance is improved in the... 

    Control performance enhancement of gas turbines in the minimum command selection strategy

    , Article ISA Transactions ; 2020 Eslami, M ; Banazadeh, A ; Sharif University of Technology
    ISA - Instrumentation, Systems, and Automation Society  2020
    Abstract
    Three novel methods, named α, ζ and ϵ, are suggested in this paper to recover the performance loss during switching in the gas turbine control systems. The Minimum Command Selection (MCS) in the gas turbine control systems prompts this performance loss. Any step towards more productivity with less aging factors have a great impact on the gas turbine's lifetime profit and vice versa. Although many hardware upgrades have been studied and applied to accomplish this, in many cases a low-risk manipulation in the software may yield equivalent achievement. State of the art gas turbine control systems are supposed to handle various forms of disturbances, several operation modes and relatively high... 

    A practical approach to networked control design for robust H∞ performance in the presence of uncertainties in both communication and system

    , Article Applied Mathematics and Computation ; Volume 381 , 2020 Haghighi, P ; Tavassoli, B ; Farhadi, A ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    This work presents results on the development of robust H∞ control strategy for Networked Control Systems (NCSs) by involving uncertainties in both communication and controlled plant subsystems. The network-induced delays in both communication links (to and from the controller) are assumed to behave as Markov chains. An analytical approach is presented to calculate the transition probabilities of the Markovian network-induced delays. By employing the augmentation method, the resultant system is converted into a delay-free uncertain singular Markovian jump system with bounded transition probabilities. New conditions are established to assure that the uncertain NCS satisfies an H∞ performance... 

    Planing craft control using pneumatically driven trim tab

    , Article Mathematics and Computers in Simulation ; Volume 178 , December , 2020 , Pages 439-463 Jokar, H ; Zeinali, H ; Tamaddondar, M. H ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Dynamic instabilities are quite common in planing crafts. This study deals with the elimination of one type of dynamic instabilities known as porpoising. The controller device is a pneumatically driven trim tab that applied to the transom of the boat. The governing dynamic equations of the planing craft and the pneumatically driven system are derived. The stability analysis of the system is carried out and porpoising instability is shown under some conditions. A dual control scheme consisting of the actuator control subsystem (inner control subsystem) and the planing craft (outer control subsystem) is proposed in order to control the planing craft from porpoising instability. Since the... 

    New robust control method applied to the locomotion of a 5-link biped robot

    , Article Robotica ; Volume 38, Issue 11 , January , 2020 , Pages 2023-2038 Kakaei, M. M ; Salarieh, H ; Sharif University of Technology
    Cambridge University Press  2020
    Abstract
    This paper proposes a new design of robust control combining feedback linearization, backstepping, and sliding mode control called FLBS applied to the locomotion of five-link biped robot. Due to the underactuated robot's model, the system has a hybrid nature, while the FLBS control can provide a stabilized walking movement even with the existence of large disturbances and uncertainties by implementing smooth chatter-free signals. Stability of the method is proven using the Lyapunov theorem based on the hybrid zero dynamics and Poincaré map. The simulations show the controller performance such as robustness and chatter-free response in the presence of uncertainty and disturbance. Copyright ©... 

    Coupling analysis and control of axial and torsional vibrations in a horizontal drill string

    , Article Journal of Petroleum Science and Engineering ; Volume 195 , 2020 Rajabali, F ; Moradi, H ; Vossoughi, G ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Vertical drilling methods have been often used for oil and gas extraction so far. In some places, for further extraction and access to the locations that cannot be obtained by the vertical drilling (due to its restrictions); horizontal drilling has become more popular. In horizontal drilling, a variety of longitudinal, torsional and lateral vibrations occur. These vibrations, if left uncontrolled, can damage the drilling rig and equipment, as well as reduce the efficiency of the drilling process and increase the processing time. The purpose of this research is to obtain the coupled axial and torsional vibration equations by analysing the vibrational modes in the horizontal section of the... 

    New robust control method applied to the locomotion of a 5-link biped robot

    , Article Robotica ; 2019 ; 02635747 (ISSN) Mehdi Kakaei, M ; Salarieh, H ; Sharif University of Technology
    Cambridge University Press  2019
    Abstract
    This paper proposes a new design of robust control combining feedback linearization, backstepping, and sliding mode control called FLBS applied to the locomotion of five-link biped robot. Due to the underactuated robot's model, the system has a hybrid nature, while the FLBS control can provide a stabilized walking movement even with the existence of large disturbances and uncertainties by implementing smooth chatter-free signals. Stability of the method is proven using the Lyapunov theorem based on the hybrid zero dynamics and Poincaré map. The simulations show the controller performance such as robustness and chatter-free response in the presence of uncertainty and disturbance. © 2020... 

    Coordinated control of doubley fed induction generator virtual inertia and power system oscillation damping using fuzzy logic

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 32, Issue 4 , 2019 , Pages 536-547 ; 17281431 (ISSN) Solat, A. R ; Ranjbar, A. M ; Mozafari, B ; Sharif University of Technology
    Materials and Energy Research Center  2019
    Abstract
    Doubly-fed induction generator (DFIG) based wind turbines with traditional maximum power point tracking (MPPT) control provide no inertia response under system frequency events. Recently, the DFIG wind turbines have been equipped with virtual inertia controller (VIC) for supporting power system frequency stability. However, the conventional VICs with fixed gain have negative effects on inter-area oscillations of regional networks. To cope with this drawback, this paper proposes a novel adaptive VIC to improve both the inter-area oscillations and frequency stability. In the proposed scheme, the gain of VIC is dynamically adjusted using fuzzy logic. The effectiveness and control performance of... 

    New robust control method applied to the locomotion of a 5-link biped robot

    , Article Robotica ; 2019 ; 02635747 (ISSN) Mehdi Kakaei, M ; Salarieh, H ; Sharif University of Technology
    Cambridge University Press  2019
    Abstract
    This paper proposes a new design of robust control combining feedback linearization, backstepping, and sliding mode control called FLBS applied to the locomotion of five-link biped robot. Due to the underactuated robot's model, the system has a hybrid nature, while the FLBS control can provide a stabilized walking movement even with the existence of large disturbances and uncertainties by implementing smooth chatter-free signals. Stability of the method is proven using the Lyapunov theorem based on the hybrid zero dynamics and Poincaré map. The simulations show the controller performance such as robustness and chatter-free response in the presence of uncertainty and disturbance. © 2020... 

    Multimodel control of nonlinear systems: An improved gap metric and stability margin-based method

    , Article Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME ; Volume 140, Issue 8 , 2018 ; 00220434 (ISSN) Ahmadi, M ; Haeri, M ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2018
    Abstract
    This paper presents a new multimodel controller design approach incorporating stability and performance criteria. The gap metric is employed to measure the distance between local models. An efficient method based on state feedback strategy is introduced to improve the maximum stability margin of the local models. The proposed method avoids local model redundancy, simplifies the multimodel controller structure, and supports employing of many linear control techniques, while does not rely on a priori experience to choose the gridding threshold value. To evaluate the proposed method, three benchmark nonlinear systems are studied. Simulation results demonstrate that the method provides the... 

    Wind turbine power improvement utilizing passive flow control with microtab

    , Article Energy ; Volume 150 , 2018 , Pages 575-582 ; 03605442 (ISSN) Ebrahimi, A ; Movahhedi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, the effect of deploying microtabs on performance improvement of a horizontal axis wind turbine blade is numerically investigated in three-dimensions. The NREL Phase VI, a stall-regulated upwind wind turbine, is used as the baseline case. Different cases are considered to investigate the effects of spanwise location as well as the height variation of tabs along the blade span, on the flow over the rotor blade. In all cases, the tab is located at 95% chord of the airfoil section on the lower surface of the blade. Results reveal that locating microtabs at the outboard part of the blade has a greater impact on the rotor performance than the inboard part. However, both cases... 

    Simulation and control of membrane reactors for catalytic reduction of dissolved oxygen from water

    , Article Canadian Journal of Chemical Engineering ; Volume 96, Issue 4 , 2018 , Pages 912-925 ; 00084034 (ISSN) Karegar Ghavibazoo, M ; Golmakani, A ; Hosseinipoor, S ; Rokhforouz, M. R ; Sharif University of Technology
    Wiley-Liss Inc  2018
    Abstract
    The catalytic reduction of dissolved oxygen (DO) from water was examined using membrane reactors and a mathematical model that considers axial dispersion, membrane permeation, and chemical reaction. The model is solved in steady state mode and the effect of various parameters on the DO removal was assessed. The results of steady state mode were employed as initial conditions for solving the model in dynamic mode. The impact of operating conditions, e.g., water flow rate, DO concentration of influent water, hydrogen flow rate, and hydrogen pressure on the performance of the DO process was studied. Results of the dynamic simulation suggested that hydrogen pressure is the best option to be used... 

    Design and assessment of variable-structure LQG PID multivariable controllers

    , Article Optimal Control Applications and Methods ; Volume 38, Issue 4 , 2017 , Pages 634-652 ; 01432087 (ISSN) Mousavi, H ; Nobakhti, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2017
    Abstract
    Control Performance Assessment (CPA) and tuning of PID controllers are studied in this paper. We propose a framework for systematic analysis of the tradeoff between the structural complexity of the controller and its performance. As the measure of the controller performance, an LQG based index is used. The problem is augmented with an additional term which forces sparsity on the complexity of a decentralized PID controller. The desired complexity is controlled via a weighting parameter which determines the cost of each additional element (i.e., P, I, and D terms). The result is a decentralized multivariable PID controller in which the complexity of each loop controller is optimized such that... 

    Simulation and control of membrane reactors for catalytic reduction of dissolved oxygen from water

    , Article Canadian Journal of Chemical Engineering ; 2017 ; 00084034 (ISSN) Karegar Ghavibazoo, M ; Golmakani, A ; Hosseinipoor, S ; Rokhforouz, M. R ; Sharif University of Technology
    Wiley-Liss Inc  2017
    Abstract
    Removal of dissolved oxygen (DO) from water has gained much attention in recent decades to prevent different problems such as corrosion, bio-fouling, and performance degradation in many industries. The traditional physical and chemical methods for DO removal have found wide application in industries. However, physical methods have low efficiency and chemical methods often produce undesirable products. Therefore, catalytic reduction by hydrogen has been regarded by a variety of industries recently. In this study, catalytic reduction of DO from water is examined using membrane reactors. The mathematical model of this system is developed while considering the axial dispersion, membrane... 

    Design and assessment of variable-structure LQG PID multivariable controllers

    , Article Optimal Control Applications and Methods ; 2016 ; 01432087 (ISSN) Mousavi, H ; Nobakhti, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    Control Performance Assessment (CPA) and tuning of PID controllers are studied in this paper. We propose a framework for systematic analysis of the tradeoff between the structural complexity of the controller and its performance. As the measure of the controller performance, an LQG based index is used. The problem is augmented with an additional term which forces sparsity on the complexity of a decentralized PID controller. The desired complexity is controlled via a weighting parameter which determines the cost of each additional element (i.e., P, I, and D terms). The result is a decentralized multivariable PID controller in which the complexity of each loop controller is optimized such that... 

    Robust control of LVAD based on the sub-regional modeling of the heart

    , Article Scientia Iranica ; Volume 23, Issue 6 , 2016 , Pages 2934-2943 ; 10263098 (ISSN) Ravanshadi, S ; Jahed, M ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    Left Ventricular Assist Devices (LVAD) have received renewed interest as a bridge-to-transplantation as well as a bridge-to-recovery device. Ironically, reports of malfunction and complications have hindered the growth of this device. In particular, the main concern is LVAD's susceptibility to excessive backlash and suction as a result of ows that are either too low or high, respectively. This study utilizes a well-established physiological model of the cardiovascular system as a reliable platform to study a proposed adaptive robust controller for a rotary motor based LVAD which overcomes such shortcomings. Proposed controller performance is evaluated by comparing simulated natural heart...