Loading...
Search for: coreflood
0.01 seconds

    An experimental and modeling study of asphaltene deposition due to CO 2 miscible injection

    , Article Petroleum Science and Technology ; Volume 31, Issue 2 , 2013 , Pages 129-141 ; 10916466 (ISSN) Bolouri, H ; Schaffie, M ; Kharrat, R ; Ghazanfari, M. H ; Ghoodjani, E ; Sharif University of Technology
    2013
    Abstract
    The authors studied deposition and entrainment of asphaltene particles as major mechanisms that occur in porous media. Deposition mechanisms that contribute to permeability reduction and entrainment of deposited particle improve the damaged permeability value. While in most previous works the effects of entrainment mechanism are considered negligible, in this study miscible CO2 injection tests were conducted by core flood apparatus to investigate the effect of asphaltene deposition on permeability and porosity alterations. Results indicated that proposed model for entrainment mechanism is affected by deposition mechanism. The asphaltene deposition core's characteristics have undeniable roles... 

    An experimental study on the applicability of water-alternating-co 2 injection in the secondary and tertiary recovery in one iranian reservoir

    , Article Petroleum Science and Technology ; Volume 30, Issue 24 , 2012 , Pages 2571-2581 ; 10916466 (ISSN) Motealleh, M ; Kharrat, R ; Gandomkar, A ; Khanamiri, H ; Nematzadeh, M ; Ghazanfari, M ; Sharif University of Technology
    2012
    Abstract
    The objective of this study was to experimentally investigate the performance of water-alternating gas (WAG) injection in one of Iran's oil reservoirs that encountered a severe pressure drop in recent years. Because one of the most appropriate studies to evaluate the reservoir occurs generally on rock cores taken from the reservoir, core samples drilled out of the reservoir's rock matrix were used for alternating injection of water and gas. In the experiments, the fluid system consisted of reservoir dead oil, live oil, Co 2, and synthetic brine; the porous media were a number of carbonate cores chosen from the oilfield from which the oil samples had been taken. All coreflood experiments were... 

    Investigation of oil recovery and CO2 storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir

    , Article Journal of Petroleum Science and Engineering ; Volume 137 , 2016 , Pages 134-143 ; 09204105 (ISSN) Shakiba, M ; Ayatollahi, S ; Riazi, M ; Sharif University of Technology
    Elsevier 
    Abstract
    Gas injection process for more oil recovery and in particular CO2 injection is well-established method to increment oil recovery from underground oil reservoirs. CO2 sequestration which takes place during this enhanced oil recovery (EOR) method has positive impact on reducing the greenhouse gas emission which causes global warming. Direct gas injection into depleted oil reservoirs, encounters several shortcomings such as low volumetric sweep efficiency, early breakthrough (BT) and high risk of gas leakage in naturally fractured carbonate oil reservoirs. Carbonated water injection (CWI) has been recently proposed as an alternative method to alleviate the problems associated with gas... 

    Direct numerical simulation of the effects of fluid/fluid and fluid/rock interactions on the oil displacement by low salinity and high salinity water: Pore-scale occupancy and displacement mechanisms

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Alizadeh, M ; Fatemi, M ; Mousavi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Laboratory experiments have shown that performance of waterflooding in oil reservoirs could be significantly increased by lowering the ionic strength and/or manipulation of its composition, which is generally known as low salinity waterflooding (LSWF). The involved mechanisms in additional oil production can be generally categorized in two categories, fluid/fluid and fluid/rock interactions. The distribution of the phases and the involved displacement mechanisms would be strongly affected by the inter-relations between capillary and viscous forces. Although there have been recent advances in the simulation of the LSWF at core scale and beyond and some models are included in commercial... 

    Direct numerical simulation of the effects of fluid/fluid and fluid/rock interactions on the oil displacement by low salinity and high salinity water: pore-scale occupancy and displacement mechanisms

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Alizadeh, M ; Fatemi, M ; Mousavi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Laboratory experiments have shown that performance of waterflooding in oil reservoirs could be significantly increased by lowering the ionic strength and/or manipulation of its composition, which is generally known as low salinity waterflooding (LSWF). The involved mechanisms in additional oil production can be generally categorized in two categories, fluid/fluid and fluid/rock interactions. The distribution of the phases and the involved displacement mechanisms would be strongly affected by the inter-relations between capillary and viscous forces. Although there have been recent advances in the simulation of the LSWF at core scale and beyond and some models are included in commercial...