Loading...
Search for: cylinder-partially-filled-with-liquid
0.011 seconds

    On the instability of spinning cylindrical shells partially filled with liquid

    , Article International Journal of Structural Stability and Dynamics ; Volume 12, Issue 3 , 2012 ; 02194554 (ISSN) Firouz Abadi, R. D ; Permoon, M. R ; Haddadpour, H ; Sharif University of Technology
    Abstract
    The dynamics and stability of rotating circular cylindrical shells partially filled with ideal liquid is analyzed. The structural dynamics of the shell is modeled by using the first-order shear deformable shell theory and the flow inside the cylinder is simulated by a quasi 2D model based on the NavierStokes equations for ideal liquid. The fluid and structural models are combined using the nonpenetration condition of the flow on the wetted surface of the cylinder and the fluid pressure on the flexible shell. The obtained fluidstructure model is employed for the determination of the stable regions of the spinning frequency of the cylinder. A series of case studies are performed on the... 

    Sloshing effects on supersonic flutter characteristics of a circular cylindrical shell partially filled with liquid

    , Article International Journal for Numerical Methods in Engineering ; 2018 ; 00295981 (ISSN) Zarifian, P ; Ovesy, H. R ; Dehghani Firouz Abadi, R ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    This paper aims to revisit the effect of sloshing on the flutter characteristics of a partially liquid-filled cylinder. A computational fluid-structure interaction model within the framework of the finite element method is developed to capture fluid-structure interactions arising from the sloshing of the internal fluid and the flexibility of its containing structure exposed to an external supersonic airflow. The internal liquid sloshing is represented by a more sophisticated model, referred to as the liquid sloshing model, and the shell structure is modeled by Sanders' shell theory. The aerodynamic pressure loading is approximated by the first-order piston theory. The initial geometric... 

    On The Stability of Spinning Composite Cylindrical Shells Partially Filled With Liquid

    , M.Sc. Thesis Sharif University of Technology Permoon, Mohammad Reza (Author) ; Haddadpour, Hassan (Supervisor) ; Dehghani Firoozabadi, Rohollah (Supervisor)
    Abstract
    In the present project an analytical model is proposed for the instability of spinning composite cylindrical shells partially filled with fluid. For this purpose, using the linearized Navier-Stokes equation for the incompressible flow, a 2-D model is developed for fluid motion at each section of the cylinder. The resultant pressure exerted on the cylinder wall as the result of the fluid motion, are calculated in terms of elastic displacements of the cylinder. Applying the Hamilton principle, the governing equations of motion of the cylinder are derived and then combined with the equations describing the fluid pressure to obtain the coupled-field equations of the structural-fluid motion.... 

    Sloshing effects on supersonic flutter characteristics of a circular cylindrical shell partially filled with liquid

    , Article International Journal for Numerical Methods in Engineering ; Volume 117, Issue 8 , 2019 , Pages 901-925 ; 00295981 (ISSN) Zarifian, P ; Ovesy, H. R ; Firouz Abadi, R. D ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    This paper aims to revisit the effect of sloshing on the flutter characteristics of a partially liquid-filled cylinder. A computational fluid-structure interaction model within the framework of the finite element method is developed to capture fluid-structure interactions arising from the sloshing of the internal fluid and the flexibility of its containing structure exposed to an external supersonic airflow. The internal liquid sloshing is represented by a more sophisticated model, referred to as the liquid sloshing model, and the shell structure is modeled by Sanders' shell theory. The aerodynamic pressure loading is approximated by the first-order piston theory. The initial geometric...