Loading...
Search for: decentralized-controller
0.005 seconds
Total 57 records

    Stabilizing control structures: An optimization framework

    , Article IEEE Transactions on Automatic Control ; Volume 67, Issue 7 , 2022 , Pages 3738-3745 ; 00189286 (ISSN) Mosalli, H ; Babazadeh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This article presents a new optimization-based approach to determine the class of stabilizing control structures with the necessary set of feedback links for interconnected systems. The proposed approach relies on a graph-theoretic interpretation and its equivalence in terms of binary linear programs (BLPs). To carry out the primary goal, first, the stabilizability of a linear time-invariant (LTI) system under the decentralized control structure is presented in terms of a BLP. Next, two graph-based criteria are proposed to characterize stabilizing control structures with the required feedback links. Finally, all possible stabilizing control structures with the necessary feedback links are... 

    Stabilizing control structures: An optimization framework

    , Article IEEE Transactions on Automatic Control ; 2021 ; 00189286 (ISSN) Mosalli, H ; Babazadeh, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    This paper presents a new optimization-based approach to determine the class of stabilizing control structures with the necessary set of feedback links for interconnected systems. The proposed approach relies on a graph theoretic interpretation and its equivalence in terms of binary linear programs (BLP). To carry out the primary goal, first, the stabilizability of an LTI system under the decentralized control structure is presented in terms of a BLP. Next, two graph-based criteria are proposed to characterize stabilizing control structures with the required feedback links. Finally, all possible stabilizing control structures with the necessary feedback links are derived via solving a set of... 

    Decentralized model predictive voltage control of islanded DC microgrids

    , Article 11th Power Electronics, Drive Systems, and Technologies Conference, PEDSTC 2020, 4 February 2020 through 6 February 2020 ; 2020 Abbasi, M ; Mahdian Dehkordi, N ; Sadati, N ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    This paper proposes a novel decentralized control approach for islanded direct-current (DC) microgrids (MGs) based on model predictive control (MPC) to regulate the distributed generation unit (DGU) output voltages, i.e. the voltages of the point of common coupling (PCC). A local controller is designed for each DGU, in the presence of uncertainties, disturbances, and unmodeled dynamics. First, a discrete-time state-space model of an MG is derived. Afterward, an MPC algorithm is designed to perform the PCC voltage control. The proposed MPC scheme ensures that the PCC voltages remain within an acceptable range. Several simulation studies have been conducted to illustrate the effectiveness of... 

    Incentive-based ramp-up minimization in multi-microgrid distribution systems

    , Article 10th IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2020, 26 October 2020 through 28 October 2020 ; Volume 2020-October , 2020 , Pages 839-843 Fattaheian Dehkordi, S ; Tavakkoli, M ; Abbaspour, A ; Fotuhi Firuzabad, M ; Lehtonen, M ; IEEE Power and Energy Society ; Sharif University of Technology
    IEEE Computer Society  2020
    Abstract
    Installation of renewable energy sources (RESs) in power systems has been dramatically increased due to clean nature and declining investment costs in recent years. This growing trend has led to new issues in the system operational management such as intense ramps inflicted on the network called system flexibility constraints. In this regard, due to decreasing the investment in bulk flexible resources, utilities would be significantly rely on local flexible ramp resources in the system to meet the supply-demand gap in each time-period. However, development of independently operated microgrids (MGs) as a result of restructuring and privatization in the power systems has imposed limitations... 

    Decentralized aggregation and leader-following control of a swarm of quadcopters with nonlinear under-actuated dynamics

    , Article Aerospace Science and Technology ; Volume 107 , December , 2020 Mahdian Parrany, A ; Alasty, A ; Sharif University of Technology
    Elsevier Masson S. R. L  2020
    Abstract
    This paper studies the decentralized control of a swarm of quadrotors on the basis of the nonlinear, highly-coupled, and under-actuated dynamic model of quadcopters. The swarm of quadcopters must illustrate the desired swarm behavior as fast as possible while collision avoidance is preserved during the entire evolution process. The interaction relationship among the swarm members is modeled by artificial potential functions and according to the nearest neighbor rule. The sliding mode control technique is employed to control the velocity of quadcopters in the swarm. Finally, two fundamental swarm behaviors, i.e. swarm aggregation and leader-following, are numerically simulated to demonstrate... 

    An optimal and decentralized transactive energy system for electrical grids with high penetration of renewable energy sources

    , Article International Journal of Electrical Power and Energy Systems ; Volume 113 , 2019 , Pages 850-860 ; 01420615 (ISSN) Rayati, M ; Amirzadeh Goghari, S ; Nasiri Gheidari, Z ; Ranjbar, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this paper, a hierarchical frequency regulation system is presented for real-time operation of the electrical grids. It includes a decentralized transactive energy system for clearing transactions of producers/consumers in real-time. The proposed system is implemented in a distributed fashion with small data communication requirement. It is proved that the proposed transactive energy system converges to the optimal power flow (OPF). An iterative method for optimizing control parameters of the proposed hierarchical frequency regulation system is also given. The proposed method is developed for high penetration of renewable energy sources (RESs) as the sizes, locations, and uncertainties of... 

    Game theory meets distributed model predictive control in vehicle-to-grid systems

    , Article 11th International Conference on Electrical and Electronics Engineering, ELECO 2019, 28 November 2019 through 30 November 2019 ; 2019 , Pages 764-768 ; 9786050112757 (ISBN) Karimi, A ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Electric Vehicles (EVs) will be used rampantly in future transportation system. Although the uncontrolled charging of these EVs will be threatening for the stability of the grid, a compatible energy trading policy may provide beneficial services to the grid as well as preserving the sustainability of the system. In this paper, by taking advantage of block rate tariff, a wholesale pricing policy is introduced. A multi-objective approach is utilized to address the cost reduction and load leveling services concurrently. Due to the high computational complexity of a centralized problem, a game theoretic approach is exerted in order to design decentralized controllers for EVs. Moreover, an MPC... 

    Distribution grid flexibility-ramp minimization using local resources

    , Article 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2019, 29 September 2019 through 2 October 2019 ; 2019 ; 9781538682180 (ISBN) Fattaheian Dehkordi, S ; Tavakkoli, M ; Abbaspour, A ; Fotuhi Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Increasing rate of renewable energy sources (RESs) integration in the distribution system and development of multi-microgrids (MMG) structures have changed the operational condition of power grids. In this context, the stochastic and intermittent nature of the RESs has increased the need for ramp up power to balance the supply and demand when electricity generation of these resources drops. Moreover, bulk power generation units, which conventionally have the possibility to provide flexibility ramp, would face lack of financial justification for expansion and operation in a system with high rate penetration of RESs. Therefore, distribution system operators (DSOs) should rely on local... 

    Adaptive fuzzy decentralized control for a class of MIMO large-scale nonlinear state delay systems with unmodeled dynamics subject to unknown input saturation and infinite number of actuator failures

    , Article Information Sciences ; Volume 475 , 2019 , Pages 121-141 ; 00200255 (ISSN) Moradvandi, A ; Shahrokhi, M ; Malek, S. A ; Sharif University of Technology
    Elsevier Inc  2019
    Abstract
    This paper addresses design of an adaptive fuzzy decentralized fault-tolerant controller for a class of uncertain multi-input multi-output (MIMO) large-scale nonlinear systems with unmodeled dynamics subject to unknown state time-varying delay, external disturbances, unknown input saturation and actuator faults. It is shown that the proposed fault-tolerant control (FTC) scheme can handle infinite number of actuator failures including partial and total loss of effectiveness. System uncertainties have been approximated by the fuzzy logic systems (FLSs). To cope with the unknown state time-varying delay, the Razumikhin lemma has been utilized and unmodeled dynamics has been tackled by... 

    Decentralized robust model predictive control for multi-input linear systems

    , Article UKACC 12th International Conference on Control, CONTROL 2018, 5 September 2018 through 7 September 2018 ; 2018 , Pages 13-18 ; 9781538628645 (ISBN) Adelipour, S ; Haeri, M ; Pannocchia, G ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, a decentralized model predictive control approach is proposed for discrete linear systems with a high number of inputs and states. The system is decomposed into several interacting subsystems. The interaction among subsystems is modeled as external disturbances. Then, using the concept of robust positively invariant ellipsoids, a robust model predictive control law is obtained for each subsystem solving several linear matrix inequalities. Maintaining the recursive feasibility while considering the attenuation of mutual coupling at each time step and the stability of the overall system are investigated. Moreover, an illustrative simulation example is provided to demonstrate the... 

    Hierarchical decentralized control of a five-link biped robot

    , Article Scientia Iranica ; Volume 25, Issue 5B , 2018 , Pages 2675-2692 ; 10263098 (ISSN) Yazdani, M ; Salarieh, H ; Foumani, M. S ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    Most of the biped robots are controlled using pre-computed trajectory methods or methods based on multi-body dynamics models. The pre-computed trajectory-based methods are simple; however, a system becomes highly vulnerable to the external disturbances. In contrast, dynamic methods make a system act faster, yet extensive knowledge is required about the kinematics and dynamics of the system. This fact gave rise to the main purpose of this study, i.e., developing a controller for a biped robot to take advantage of the simplicity and computational efficiency of trajectory-based methods and the robustness of the dynamic-based approach. To do so, this paper presents a two-layer hierarchical... 

    Decentralized multivariable PID controller with pre compensator for gas turbine system

    , Article 2017 IEEE 4th International Conference on Knowledge-Based Engineering and Innovation, KBEI 2017 ; Volume 2018-January , 2018 , Pages 0074-0082 ; 9781538626405 (ISBN) Mousavi, H ; Azizi, A ; Nourisola, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, a restricted structure of PID controller is proposed for automobile gas turbine by considering a LQG cost function. So PID Controller coefficients are calculated by minimizing this cost function. One of the most important characteristics of this approach, its ability to design various structure PID controllers by solving optimization problem only for one time, moreover it can approximate main optimization problem by a repetitive Quadratic optimization Problem (QP). This approach is convex optimization and has an analytic solution; therefore its calculations are not complicated. In defined cost function, there are two weighting functions, control error and control action; they... 

    Decentralized control of rhythmic activities in fully-actuated/under-actuated robots

    , Article Robotics and Autonomous Systems ; Volume 101 , 2018 , Pages 20-33 ; 09218890 (ISSN) Yazdani, M ; Salarieh, H ; Saadat Foumani, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Rhythmic activities such as swimming stroke in the human body are learnable through conscious trainings. Inspiringly, the main objective of this study is to develop a control framework to reproduce the described functionality in the imitating robots. To do so, a two layer supervisory controller is proposed. The high-level controller, which acts as the conscious controller during trainings, is a supervisory dynamic-based controller and uses all system sensory data to generate stable rhythmic movements. On the other hand, the low-level controller in this structure is a distributed trajectory-based controller network. Each node in this network is an oscillatory dynamical system which has the... 

    Design and assessment of variable-structure LQG PID multivariable controllers

    , Article Optimal Control Applications and Methods ; Volume 38, Issue 4 , 2017 , Pages 634-652 ; 01432087 (ISSN) Mousavi, H ; Nobakhti, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2017
    Abstract
    Control Performance Assessment (CPA) and tuning of PID controllers are studied in this paper. We propose a framework for systematic analysis of the tradeoff between the structural complexity of the controller and its performance. As the measure of the controller performance, an LQG based index is used. The problem is augmented with an additional term which forces sparsity on the complexity of a decentralized PID controller. The desired complexity is controlled via a weighting parameter which determines the cost of each additional element (i.e., P, I, and D terms). The result is a decentralized multivariable PID controller in which the complexity of each loop controller is optimized such that... 

    Cooperative energy management of hybrid DC renewable grid using decentralized control strategies

    , Article Energies ; Volume 9, Issue 11 , 2016 ; 19961073 (ISSN) Beykverdi, M ; Jalilvand, A ; Ehsan, M ; Sharif University of Technology
    MDPI AG  2016
    Abstract
    This paper attempted to control a hybrid DC microgrid in islanded operation mode using decentralized power management strategies. Proposed adaptive I/V characteristic for hybrid photovoltaic (PV) and battery energy storage system (BESS) and wind turbine generator (WTG) adapts the distributed energy resources (DER) behavior independently in accordance with the load demand. Hence, the PV module can spend its maximum power on load demand and spend the extra power for charging the BESS, which will regulate DC bus voltage and maintain the power balance within the microgrid. When load demand is beyond the maximum generation power of PV unit, WTG will supply the energy shortage. The proposed... 

    Robust decentralized control of consensus-based formations of leader-follower networks with uncertain directed topologies on bounded velocity trajectories unde ned for followers via backstepping method

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 1064-1072 ; 10263098 (ISSN) Sayyaadi, H ; Soltani, A ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    In this paper, decentralized control of formation of a special category of leaderfollower networks on bounded velocity trajectories is addressed. The network of the agents in this study is supposed to have a directed graph with a spanning tree rooted at the leader agent. Moreover, follower agents do not receive online or have offine velocity of the desired trajectory, such as in tracking problem of trajectories which are not predefined or when the total bandwidth is narrow. Furthermore, the leader does not receive any information from any agent and its control is fully centralized. In the present study, formation problem is considered a consensus problem. The controller is designed for... 

    Design and assessment of variable-structure LQG PID multivariable controllers

    , Article Optimal Control Applications and Methods ; 2016 ; 01432087 (ISSN) Mousavi, H ; Nobakhti, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2016
    Abstract
    Control Performance Assessment (CPA) and tuning of PID controllers are studied in this paper. We propose a framework for systematic analysis of the tradeoff between the structural complexity of the controller and its performance. As the measure of the controller performance, an LQG based index is used. The problem is augmented with an additional term which forces sparsity on the complexity of a decentralized PID controller. The desired complexity is controlled via a weighting parameter which determines the cost of each additional element (i.e., P, I, and D terms). The result is a decentralized multivariable PID controller in which the complexity of each loop controller is optimized such that... 

    Two-level optimal load-frequency control for multi-area power systems

    , Article International Journal of Electrical Power and Energy Systems ; Volume 53, Issue 1 , December , 2013 , Pages 540-547 ; 01420615 (ISSN) Rahmani, M ; Sadati, N ; Sharif University of Technology
    2013
    Abstract
    In large-scale power systems, classical centralized control approaches may fail due to geographically distribution of information and decentralized controllers result in sub-optimal solution for load-frequency control (LFC) problems. In this paper, a two-level structure is presented to obtain optimal solution for LFC problems and also reduce the computational complexity of centralized controllers. In this approach, an interconnected multi-area power system is decomposed into several sub-systems (areas) at the first-level. Then an optimization problem in each area is solved separately, with respect to its local information and interaction signals coming from other areas. At the second-level,... 

    Control of car-like (wheeled) multi robots for following and hunting a moving target

    , Article Scientia Iranica ; Volume 18, Issue 4 B , August , 2011 , Pages 950-965 ; 10263098 (ISSN) Sayyaadi, H ; Kouhi, H ; Salarieh, H ; Sharif University of Technology
    2011
    Abstract
    The main purpose of this paper is to design a decentralized controller for some car-like (wheeled) multi robots to follow and hunt a moving target. Considering geometric dimensions, mass and moment of inertia, robots are very similar to actual cars in which the outputs of the controller are steering and driving wheel torques. All robots are equipped with range and bearing sensors along with antenna, to communicate radio wave signals. A Kalman filter is implemented to estimate relative position, state variables of the target and state variables of other robots. The controller is designed to carry out the group maneuver of the system, based on the system dynamics analysis of inertial agents,... 

    Robust decentralized control for islanded operation of two radially connected DG systems

    , Article 2010 IEEE International Symposium on Industrial Electronics, ISIE 2010, Bari, 4 July 2010 through 7 July 2010 ; July , 2010 , Pages 2272-2277 ; 9781424463916 (ISBN) Moradi, R ; Karimi, H ; Karimi Ghartemani, M ; The Institute of Electrical and Electronics Engineers (IEEE); IEEE Industrial Electronics Society (IES); IEEE Control Systems Society (CSS); Society of Instrument and Control Engineers (SICE-Japan); Politecnico di Bari ; Sharif University of Technology
    2010
    Abstract
    A decentralized servomechanism controller for islanded (autonomous) operation of radial connection of two distributed generation (DG) units is proposed in this paper. Each DG unit utilizes a voltage-sourced converter (VSC) for interface to its dedicated load. The DG units and the loads are to operate in the islanded mode of operation. Each DG unit regulates the voltage of its dedicated load in a decentralized manner. In this paper, it is first shown that the radial connection of two DG units in the islanded mode constitutes an interconnected composite system consisting of two subsystems. Moreover, the paper shows that the overall islanded system can be controlled by the local controllers,...