Loading...
Search for: density-of-states
0.005 seconds
Total 29 records

    Effects of K doping on electronic structure of Ba1-xKxFe2As2 superconductor by ab-initio density functional theory

    , Article Physica C: Superconductivity and its Applications ; Vol. 507, issue , Dec , 2014 , p. 22-24 Sandoghchi, M ; Khosroabadi, H ; Akhavan, M ; Sharif University of Technology
    Abstract
    The crystal and electronic structures of normal phase of Ba1-xKxFe2As2 for x = 0.0, 0.5 and 1.0 have been studied by using pseudopotential Quantum Espresso code based on ab-initio density functional theory. Effects of K doping on the crystal structure and lattice parameters have been calculated and compared with the experimental and computational reported data for similar compounds. The metal-metal bonding scenario was used to explain the changes of lattice parameters by K doping. The electronic structure of this system including of density of states and band structure have been calculated and investigated by K doping. One of the interesting results is that a larger peak is appeared near the... 

    Role of 3D-paired pentagon-heptagon defects in electronic and transport properties of zigzag graphene nanoribbons

    , Article Applied Physics A: Materials Science and Processing ; Volume 116, Issue 1 , July , 2014 , Pages 295-301 ; ISSN: 09478396 Fotoohi, S ; Moravvej Farshi, M. K ; Faez, R ; Sharif University of Technology
    Abstract
    Electronic and transport properties of 11 zigzag graphene nanoribbons (11-z-GNRs) with two types of 3D-paired pentagon-heptagon defects (3D-PPHDs) are studied using density functional theory combined with non-equilibrium Green's function method. The C ad-dimers that have been introduced to z-GNRs to form these 3D-PPHDs have induced local strains forcing the C-bonds in the ad-dimers to hybridize in sp3-like rather than sp2-like orbitals. Such transformations that cause extra electrons to accumulate around the 3D-PPHDs are responsible for the variations in the electronic and transport properties of the defected z-GNRs. Density of states (DOS) for 11-z-GNRs containing either type of 3D-PPHDs,... 

    Ab initio study of electronic effects in the ZnO/TiO2 core/shell interface: Application in dye sensitized solar cells

    , Article RSC Advances ; Vol. 4, issue. 1 , April , 2014 , p. 301-307 Pazoki, M ; Nafari, N ; Taghavinia, N ; Sharif University of Technology
    Abstract
    Core/shell structure of ZnO nanowires coated with a monolayer of TiO 2 is investigated using Density Functional Theory (DFT). The electronic states of the semiconductor is calculated and compared before and after coating of the TiO2 monolayer on a ZnO [101 0] surface. The effect of TiO2 coating induce surface states changes and shifts the conduction and valence band edges to higher energies. Our results, in qualitative agreement with the experimental work of Matt Law et al. (J. Phys. Chem. B, 110, 22652), show an increase in open circuit voltage and a decrease in short circuit current in ZnO/TiO2 core shell dye sensitized solar cells. Regarding the semiconductor density of states (DOS), TiO2... 

    Electronic and transport properties of monolayer graphene defected by one and two carbon ad-dimers

    , Article Applied Physics A: Materials Science and Processing ; Vol. 116, issue. 4 , 2014 , p. 2057-2063 Fotoohi, S ; Moravvej-Farshi, M. K ; Faez, R ; Sharif University of Technology
    Abstract
    Using density functional theory combined with non-equilibrium Green's function method, we have investigated the electronic and transport properties of graphenes defected by one and two carbon ad-dimers (CADs), placed parallel to the graphene lattice. Addition of these CADs to graphenes creates 3D paired pentagon-heptagon defects (3D-PPHDs). The band structure, density of states (DOS), quantum conductance, projected DOS, as well as the current-voltage characteristic per graphene super-cells containing each type of 3D-PPHD are calculated. The local strain introduced to graphene by 3D-PPHDs forces the C-bonds in the dimers to hybridize in sp 3-like rather than sp 2-like orbitals, creating... 

    Size and temperature dependency on structure, heat capacity and phonon density of state for colloidal silver nanoparticle in 1-ethyl-3-methylimidazolium hexafluorophosphate ionic liquid

    , Article Journal of Molecular Liquids ; Volume 230 , 2017 , Pages 374-383 ; 01677322 (ISSN) Kiani, S ; Taherkhani, F ; Sharif University of Technology
    Abstract
    Phonon detector can be designed by using colloidal silver nanoparticle (Ag NP) in presence of 1-Ethyl-3-methylimidazolium Hexafluorophosphate [EMim][PF6] ionic liquid (IL) via computational technique as the first time for many and high performance biosensors applications. Density functional theory as a quantum chemistry calculation method has been used to get the potential interaction between silver metal and ionic solvent. Molecular dynamics simulation shows that in small sizes of colloidal Ag NP in [EMim][PF6], electrical effect of IL makes one main phonon peak and in big size of colloidal Ag NP, splitting of phonon density occurs with two peaks due to the lower electrical field of IL with... 

    Coherent conductance in an alternating dot: Exact results

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 27, Issue 1-2 , 2005 , Pages 227-234 ; 13869477 (ISSN) Mardaani, M ; Esfarjani, K ; Sharif University of Technology
    2005
    Abstract
    In this paper we have calculated the conductance of a periodic quantum dot attached to metallic leads, within the tight-binding (TB) model and in the ballistic regime. We have calculated the Green's function (GF), density of states (DOS) and the coherent transmission coefficient (TC) fully analytically for an alternating quantum dot (A-QD). The quasi-gap, bound states energies, the energy and dot-size dependence of the GF and conductance for the system are also derived. Finally, we show analytically the conductance can be switched between insulating (OFF) and conducting (ON) states by applying a gate voltage. © 2004 Elsevier B.V. All rights reserved  

    Scanning tunneling spectroscopy of porous silicon in presence of methanol

    , Article Sensors and Actuators, B: Chemical ; Volume 120, Issue 1 , 2006 , Pages 172-176 ; 09254005 (ISSN) Rahimi, F ; Iraji zad, A ; Vaseghinia, S ; Sharif University of Technology
    2006
    Abstract
    In this research, we used the scanning tunneling spectroscopy (STS) technique to probe the local electrical properties of the surface of meso-porous silicon and its substrate, including local density of states (DOS) in air and in methanol environment to increase our knowledge of sensing phenomena. Meso-porous silicon was prepared on p+-type Si which has high sensitivity toward methanol. Observations revealed that while the surface electrical properties of p+-type Si have not sensible change toward methanol, average local density of state of the porous layer increases after the exposure to methanol especially in the E < EF region. Moreover, large number of surface states is produced in band... 

    Electron transport phenomenon simulation through the carborane nano-molecular wire

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 40, Issue 9 , August , 2008 , Pages 2965-2972 ; 13869477 (ISSN) Aghaie, H ; Gholami, M. R ; Monajjemi, M ; Ganji, M. D ; Sharif University of Technology
    2008
    Abstract
    The electron transport characteristics of a 1,10-dimethylene-1,10-dicarba-closo-decaborane (10-vertex carborane) single molecular conductor is investigated via the density functional-based non-equilibrium Green's function (DFT-NEGF) method. We consider three configurations for the molecular wire sandwiched between two Au(1 0 0) electrodes: the hollow site, top site and bridge site positions. Our results show that the energetically favorable hollow site configuration has a higher current intensity than the other configurations. The projection of the density of states (PDOS) and the transmission coefficients T(E) of the two-probe system at zero bias are analyzed, and it suggests that the... 

    Fourier transform infrared spectroscopy and scanning tunneling spectroscopy of porous silicon in the presence of methanol

    , Article Sensors and Actuators, B: Chemical ; Volume 132, Issue 1 , 2008 , Pages 40-44 ; 09254005 (ISSN) Razi, F ; Rahimi, F ; Iraji zad, A ; Sharif University of Technology
    2008
    Abstract
    Porous silicon samples were obtained from p+- and n-type silicon wafers. Gas sensing measurements showed that the electrical conductivity of porous Si on p+- and n-type wafers increases strongly and decreases weakly in the presence of methanol gas, respectively. Scanning tunneling spectroscopy (STS) indicates that the adsorption of methanol on the surface of n-porous silicon decreases the average density of states especially in the band gap. Fourier transform infrared (FTIR) spectroscopy reveals that after methanol exposure partial surface oxidation occurs which produces electron traps as well as methanol adsorption on the porous surfaces. These observations imply that the number of... 

    Calculation of density of states in a 2D photonic crystal with separable profile of permittivity

    , Article Photonic Crystal Materials and Devices VII, San Jose, CA, 21 January 2008 through 23 January 2008 ; Volume 6901 , 2008 ; 0277786X (ISSN); 9780819470768 (ISBN) Baradaran Ghasemi, A. H ; Khorasani, S ; Latifi, H ; Atabaki, A. H ; The International Society for Optical Engineering (SPIE) ; Sharif University of Technology
    2008
    Abstract
    When the periodic permittivity of two-dimensional (2D) photonic crystal (PC) can be separated in x- and y- coordinates, one can consider the structure as two separate 1D photonic crystals, one of them being periodic in x coordinate and the other in y coordinate. If it is possible to find a proper separable permittivity function, we can approximate a 2D PC with two distinct 1D structures. One of the advantages is rapid calculation the density of state of a 2D PC. In this article an analytical calculation of the density of states for such a 2D PC has been done with the aim of taking this advantage. For calculating the density of states we use the effective resonance approach to analyze the 1D... 

    Theoretical study of the electron transport through the cysteine amino acid nanomolecular wire

    , Article International Journal of Nanoscience ; Volume 7, Issue 2-3 , 2008 , Pages 95-102 ; 0219581X (ISSN) Ganji, M. D ; Aghaie, H ; Gholami, M. R ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2008
    Abstract
    In this paper, we study the electrical transport and Negative Differential Resistance (NDR) in a single molecular conductor consisting of a cysteine sandwiched between two Au(111) electrodes via the Density Functional Theory-based Nonequilibrium Green's Function (DFT-NEGF) method. We show that (surprisingly, despite their apparent simplicity, these Au/cysteine/Au nanowires are shown to be a convenient NDR device) the smallest two-terminal molecular wire can exhibit NDR behavior to date. Experiments with a conventional or novel self-assembled monolayer (SAM) are proposed to test these predictions. The projected density of states (PDOSs) and transmission coefficients T(E) under various... 

    First principles study of the I-V characteristics of the alkane-thiols nano-molecular wires

    , Article Current Applied Physics ; Volume 9, Issue 2 , 2009 , Pages 367-373 ; 15671739 (ISSN) Aghaie, H ; Gholami, M. R ; Darvish Ganji, M ; Taghavi, M. M ; Sharif University of Technology
    2009
    Abstract
    We report a density functional non-equilibrium Green's function study of electrical transport in a single molecular conductor consisting of an ethane-dithiolate (C2H4S2) molecular wire with two sulfur end groups bonded to the Au(1 1 1) electrodes. We show that the current was increased by increasing the external voltage biases. The projected density of states (PDOS) and transmission coefficients T(E) under various external voltage biases are analyzed, and it suggests that the variation of the coupling between the molecule and the electrodes with external bias leads to the increase of the current. Furthermore, the investigation of the transport properties of the pentane-dithiolate (C5H10S2)... 

    Local density of states of a finite-sized rectangular-lattice photonic crystal with separable profile of permittivity

    , Article Waves in Random and Complex Media ; Volume 20, Issue 3 , 2010 , Pages 419-442 ; 17455030 (ISSN) Baradaran Ghasemi, A. H ; Khorasani, S ; Latifi, H ; Atabaki, A. H ; Sharif University of Technology
    2010
    Abstract
    A different approach in the calculation of two-dimensional local density of states has been presented for a two-dimensional finite rectangular-lattice photonic crystal with a separable profile of permittivity. Approximate staircase structures are already shown to be useful for their ability to reproduce actual properties of practical square lattice photonic crystals. Using the effective resonance approach in a Fabry-Perot resonator and transfer matrix method an analytical expression for calculating a two-dimensional local density of states can be derived for both polarisations in the structure. It is shown that for this geometry one can resolve the modes as a product of two separate... 

    The electron density distribution and field profile in underdense magnetized plasma

    , Article Physics of Plasmas ; Volume 17, Issue 3 , 2010 ; 1070664X (ISSN) Sadighi-Bonabi, R ; Etehadi-Abari, M ; Sharif University of Technology
    2010
    Abstract
    In this work propagation of a high frequency electromagnetic wave in underdense plasma in presence of an external magnetic field is investigated. When a constant magnetic field perpendicular to the motion of electrons is applied, then the electrons rotate around the magnetic field lines and generate electromagnetic part in the wake with a nonzero group velocity. By using of the Maxwell equations and nonlinear differential equation for the electric field a direct one-dimensional (1D) procedure for calculating hydrodynamic equations are developed and the electric and magnetic field profiles in the plasma are investigated. It is shown that by using the external (dc) magnetic field in constant... 

    Investigation of quantum conductance in semiconductor single-wall carbon nanotubes: Effect of strain and impurity

    , Article Journal of Applied Physics ; Volume 110, Issue 6 , 2011 ; 00218979 (ISSN) Rabiee Golgir, H ; Faez, R ; Pazoki, M ; Karamitaheri, H ; Sarvari, R ; Sharif University of Technology
    2011
    Abstract
    In this paper the effect of strain and impurity on the quantum conductance of semiconducting carbon nanotubes (CNTs) have been studied by ab-initio calculations. The effect of strain and impurity on the CNT conducting behavior and physical characteristics, like density of states (DOS), band structure, and atomic local density of state (LDOS), is considered and discussed separately and simultaneously. Our results show that the quantum conductance of semiconductor CNTs is increased by compression strain, elongation strain, and replacing nitrogen and boron doping in its structure. The amount of increasing in the conductance depends on the type of strain and impurity. Conductance of CNT can be... 

    Electronic features of rippled graphene

    , Article ICEE 2012 - 20th Iranian Conference on Electrical Engineering ; 2012 , Pages 170-172 ; 9781467311489 (ISBN) Haji Nasiri, S ; Moravvej Farshi, M. K ; Faez, R ; Bajelan, A ; Sharif University of Technology
    2012
    Abstract
    Using tight binding theory the effect of topological ripples on the electronic band structure, density of states (DOS), and Fermi velocity of graphene are studied. The results show that by an increase in the ripple height the graphene Fermi velocity decreases and its DOS increases.- Moreover, we show that an increase in the ripple period causes the graphene band gap and DOS to decrease and its Fermi velocity to increase  

    Methane molecule over the defected and rippled graphene sheet

    , Article Solid State Communications ; Volume 152, Issue 15 , August , 2012 , Pages 1493-1496 ; 00381098 (ISSN) Shayeganfar, F ; Neek Amal, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    Adsorption of a methane molecule (CH 4) onto a defected and rippled graphene sheet is studied using ab initio and molecular mechanics calculations. The optimal adsorption position and orientation of this molecule on the graphene surface (motivated by the recent realization of graphene sensors to detect individual gas molecules) is determined and the adsorption energies are calculated. In light of the density of states, we used the SIESTA code. It is found that (i) classical force field yields adsorption energy comparable with experimental result and ab initio calculation; (ii) the periodic nature of the van der Waals potential energy stored between methane and perfect sheet is altered due to... 

    Effect of stone-wales defects on electronic properties of armchair graphene nanoribbons

    , Article 2013 21st Iranian Conference on Electrical Engineering, ICEE 2013 ; 2013 , 14-16 May ; 9781467356343 (ISBN) Samadi, M ; Faez, R ; Sharif University of Technology
    2013
    Abstract
    In this paper, the effects of Stone-Wales (SW) defect on transport properties of armchair graphene nanoribbons (AGNRs) are studied using tight binding calculations combined with nonequilibrium Green's function (NEGF). We evaluate transmission and density of states (DOS) in two cases, pristine and defective AGNR, and we compare the results. Our results indicate that in the latter case, a larger bandgap is made due to symmetry breaking in GNR layer  

    RKKY interaction in heavily vacant graphene

    , Article Journal of Physics Condensed Matter ; Volume 25, Issue 37 , August , 2013 ; 09538984 (ISSN) Habibi, A ; Jafari, S. A ; Sharif University of Technology
    2013
    Abstract
    Dirac electrons in clean graphene can mediate the interactions between two localized magnetic moments. The functional form of the RKKY interaction in pristine graphene is specified by two main features: (i) an atomic-scale oscillatory part determined by a wavevector → connecting the two valleys; with doping another longer range oscillation appears which arises from the existence of an extended Fermi surface characterized by a momentum scale kF; (ii) an algebraic Rα decay in large distances where the exponent α=-3 is a distinct feature of undoped Dirac sea in two dimensions. In this work, we investigate the effect of a few per cent vacancies on the above properties. Depending on the doping... 

    Electronic and phonon structures of BaFe2As2 superconductor by Ab-initio density functional theory

    , Article Journal of Superconductivity and Novel Magnetism ; Volume 26, Issue 1 , January , 2013 , Pages 93-100 ; 15571939 (ISSN) Sandoghchi, M ; Khosroabadi, H ; Almasi, H ; Akhavan, M ; Sharif University of Technology
    2013
    Abstract
    Electronic and phonon structures of the BaFe2As2 superconductor in the magnetic-orthorhombic phase have been investigated by the ab-initio density functional theory using the pseudopotential Quantum Espresso code. Density of state and electronic band structure for this phase has been studied, but phonon dispersion has been obtained only for the nonmagnetic-orthorhombic phase. Electronic band structure and density of states are in good agreement with other calculations in the literature. The electronic state near the Fermi energy are essentially made from Fe3d and As4p orbital that indicate in-plane conductivity in FeAs layers in this system. Comparing calculated phonon dispersions with...