Loading...
Search for: design-constraints
0.01 seconds

    Design for scalability in enterprise SSDs

    , Article Parallel Architectures and Compilation Techniques - Conference Proceedings, PACT ; 24-27 August , 2014 , p. 417-429 ; ISSN: 1089795X ; ISBN: 9781450328098 Tavakkol, A ; Arjomand, M ; Sarbazi-Azad, H ; Sharif University of Technology
    Abstract
    Solid State Drives (SSDs) have recently emerged as a high speed random access alternative to classical magnetic disks. To date, SSD designs have been largely based on multi-channel bus architecture that confronts serious scalability problems in high-end enterprise SSDs with dozens of flash memory chips and a gigabyte host interface. This forces the community to rapidly change the bus-based inter-flash standards to respond to ever increasing application demands. In this paper, we first give a deep look at how different flash parameters and SSD internal designs affect the actual performance and scalability of the conventional architecture. Our experiments show that SSD performance improvement... 

    A comparative study of energy/power consumption in parallel decimal multipliers

    , Article Microelectronics Journal ; Vol. 45, Issue 6 , June , 2014 , pp. 775-780 Malekpour, A ; Ejlali, A ; Gorgin, S ; Sharif University of Technology
    Abstract
    Decimal multiplication is a frequent operation with inherent complexity in implementation. Commercial and financial applications require working with decimal numbers while it has been shown that if we convert decimal number to binary ones, this will negatively influence the preciseness required for these applications. Existing research works on parallel decimal multipliers have mainly focused on latency and area as two major factors to be improved. However, energy/power consumption is another prominent issue in today's digital systems. While the energy consumption of parallel decimal multipliers has not been addressed in previous works, in this paper we present a comparative study of... 

    Design methodology and preliminary sizing of an unmanned mars exploration plane (UMEP)

    , Article APPLIED MECHANICS AND MATERIALS; 332; 15; Biomechanics, neurorehabilitation, mechanical engineering, manufacturing systems, robotics and aerospace: optimization of the engineering systems; OPTIROB 2013 ; Volume 332 , 2013 , Pages 15-20 ; 16609336 (ISSN) ; 9783037857335 (ISBN) Behroo, M ; Banazadeh, A ; Golkhandan, A. R ; Sharif University of Technology
    2013
    Abstract
    This paper discusses the mission requirements and design constraints for an Unmanned Martian research aircraft based on a tailor-made classical airplane design methodology. First, the exploration mission is described using the information from previous real-world experiences and the desired payload is proposed accordingly. The environmental conditions that dictate severe constraints to the design space are characterized afterwards. The conventional airplane design cycle is modified to address the lack of statistical data and to define a proper design recycling criteria. Eventually, the outcome is presented in the form of a novel configuration that is well suited to carry out the specified... 

    Near-optimal velocity control for mobile charging in wireless rechargeable sensor networks

    , Article IEEE Transactions on Mobile Computing ; Volume 15, Issue 7 , 2016 , Pages 1699-1713 ; 15361233 (ISSN) Shu, Y ; Yousefi, H ; Cheng, P ; Chen, J ; Gu, Y. J ; He, T ; Shin, K. G ; Sharif University of Technology
    Institute of electrical and electronics engineers Inc  2016
    Abstract
    Limited energy in each node is the major design constraint in wireless sensor networks (WSNs). To overcome this limit, wireless rechargeable sensor networks (WRSNs) have been proposed and studied extensively over the last few years. In a typical WRSN, batteries in sensor nodes can be replenished by a mobile charger that periodically travels along a certain trajectory in the sensing area. To maximize the charged energy in sensor nodes, one fundamental question is how to control the traveling velocity of the charger. In this paper, we first identify the optimal velocity control as a key design objective of mobile wireless charging in WRSNs. We then formulate the optimal charger velocity... 

    Compartment model for steam reforming of methane in a membrane-assisted bubbling fluidized-bed reactor

    , Article International Journal of Hydrogen Energy ; Volume 34, Issue 3 , 2009 , Pages 1275-1291 ; 03603199 (ISSN) Dehkordi, A.M ; Memari, M ; Sharif University of Technology
    2009
    Abstract
    A compartment model was developed to describe the flow pattern of gas within the dense zone of a membrane-assisted fluidized-bed reactor (MAFBR), in the bubbling mode of operation for steam reforming of methane both with (adiabatic) and without (isothermal) entering oxygen. Considering such a flow pattern and using the experimental data reported elsewhere [Roy S, Pruden BB, Adris AM, Grace JR, Lim CJ. Fluidized-bed steam methane reforming with oxygen input. Chem Eng Sci 1999; 54:2095-2102.], the parameters of the developed model (i.e., number of compartments for the bubble and emulsion phases) were determined and fair agreements were obtained between model predictions and experimental data.... 

    An analytical performance evaluation for WSNs using loop-free bellman ford protocol

    , Article 2009 International Conference on Advanced Information Networking and Applications, AINA 2009, Bradford, 26 May 2009 through 29 May 2009 ; 2009 , Pages 568-571 ; 1550445X (ISSN); 9780769536385 (ISBN) Baharloo, M ; Hajisheykhi, R ; Arjomand, M ; Jahangir, A. H ; IEEE Computer Society ; Sharif University of Technology
    2009
    Abstract
    Although several analytical models have been proposed for wireless sensor networks (WSNs) with different capabilities, very few of them consider the effect of general service distribution as well as design constraints on network performance. This paper presents a new analytical model to compute message latency in a WSN with loop-free Bellman Ford routing strategy. The model considers limited buffer size for each node using M/G/1/k queuing system. Also, contention probability and resource utilization are suitably modeled. The results obtained from simulation experiments confirm that the model exhibits a high degree of accuracy for various network configurations. © 2009 IEEE  

    Analysis and reliability evaluation of a high step-up soft switching push-pull DC-DC converter

    , Article IEEE Transactions on Reliability ; Volume 69, Issue 4 , 2020 , Pages 1376-1386 Tarzamni, H ; Babaei, E ; Panahandeh Esmaeelnia, F ; Dehghanian, P ; Tohidi, S ; Bannae Sharifian, M. B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this article, a new soft switching isolated push-pull dc-dc converter using a three-winding transformer is proposed. The proposed hybrid resonant and pulse width modulated converter employs a conventional push-pull structure in the primary side, a voltage doubler in the secondary side, and a bidirectional switch besides the transformer, altogether help offering a high efficiency over a wide range of input and output voltage signals with an unsophisticated fixed-frequency control mechanism. The primary-side switches are commutated under zero voltage switching with low switching current and the secondary-side diodes are commutated under zero current switching. In this article, we first... 

    Towards high data-rate diffusive molecular communications: A review on performance enhancement strategies

    , Article Digital Signal Processing: A Review Journal ; 2021 ; 10512004 (ISSN) Gursoy, M. C ; Nasiri-Kenari, M ; Mitra, U ; Sharif University of Technology
    Elsevier Inc  2021
    Abstract
    Diffusive molecular communications (DiMC) have recently gained attention as a candidate for nano- to micro- and macro-scale communications due to its simplicity and energy efficiency. As signal propagation is solely enabled by Brownian motion mechanics, DiMC faces severe inter-symbol interference (ISI), which limits reliable and high data-rate communications. Herein, recent literature on DiMC performance enhancement strategies is surveyed; key research directions are identified. Signaling design and associated design constraints are presented. Studies on fundamental information theoretic limits of DiMC channel are reviewed. Classical and novel transceiver designs are discussed with an... 

    Towards high data-rate diffusive molecular communications: A review on performance enhancement strategies

    , Article Digital Signal Processing: A Review Journal ; Volume 124 , 2022 ; 10512004 (ISSN) Gursoy, M. C ; Nasiri Kenari, M ; Mitra, U ; Sharif University of Technology
    Elsevier Inc  2022
    Abstract
    Diffusive molecular communications (DiMC) have recently gained attention as a candidate for nano- to micro- and macro-scale communications due to its simplicity and energy efficiency. As signal propagation is solely enabled by Brownian motion mechanics, DiMC faces severe inter-symbol interference (ISI), which limits reliable and high data-rate communications. Herein, recent literature on DiMC performance enhancement strategies is surveyed; key research directions are identified. Signaling design and associated design constraints are presented. Studies on fundamental information theoretic limits of DiMC channel are reviewed. Classical and novel transceiver designs are discussed with an...