Loading...
Search for: dg-units
0.004 seconds

    Active power management of multihybrid fuel cell/supercapacitor power conversion system in a medium voltage microgrid

    , Article IEEE Transactions on Smart Grid ; Volume 3, Issue 4 , 2012 , Pages 1903-1910 ; 19493053 (ISSN) Ghazanfari, A ; Hamzeh, M ; Mokhtari, H ; Karimi, H ; Sharif University of Technology
    2012
    Abstract
    This paper proposes a hierarchical active power management strategy for a medium voltage (MV) islanded microgrid including a multihybrid power conversion system (MHPCS). To guarantee excellent power management, a modular power conversion system is realized by parallel connection of small MHPCS units. The hybrid system includes fuel cells (FC) as main and supercapacitors (SC) as complementary power sources. The SC energy storage compensates the slow transient response of the FC stack and supports the FC to meet the grid power demand. The proposed control strategy of the MHPCS comprises three control loops; dc-link voltage controller, power management controller, and load current sharing... 

    A new control strategy for a multi-bus MV microgrid under unbalanced conditions

    , Article IEEE Transactions on Power Systems ; Volume 27, Issue 4 , 2012 , Pages 2225-2232 ; 08858950 (ISSN) Hamzeh, M ; Karimi, H ; Mokhtari, H ; Sharif University of Technology
    2012
    Abstract
    This paper proposes a new control strategy for the islanded operation of a multi-bus medium voltage (MV) microgrid. The microgrid consists of several dispatchable electronically-coupled distributed generation (DG) units. Each DG unit supplies a local load which can be unbalanced due to the inclusion of single-phase loads. The proposed control strategy of each DG comprises a proportional resonance (PR) controller with an adjustable resonance frequency, a droop control strategy, and a negative-sequence impedance controller (NSIC). The PR and droop controllers are, respectively, used to regulate the load voltage and share the average power components among the DG units. The NSIC is used to... 

    Imperialist competition algorithm for distributed generation connections

    , Article IET Generation, Transmission and Distribution ; Volume 6, Issue 1 , January , 2012 , Pages 21-29 ; 17518687 (ISSN) Soroudi, A ; Ehsan, M ; Sharif University of Technology
    2012
    Abstract
    This study proposes an imperialist competition algorithm (ICA) to maximise the benefits of distribution network operators (DNOs) because of the existence of distributed generation (DG) units. The sum of active loss reduction and network investment deferral incentives has been considered as the objective function to be maximised in this study. The optimal location and size of DG units in the network are found considering various techno-economical issues. The application of the proposed methodology in the UK under current Ofgem financial incentives for DNOs is investigated. The ability of the proposed approach in finding the optimal solution is validated by comparing the obtained results with... 

    μ-Synthesis control for an islanded microgrid with structured uncertainties

    , Article IECON Proceedings (Industrial Electronics Conference), 7 November 2011 through 10 November 2011 ; November , 2011 , Pages 3064-3069 ; 9781612849720 (ISBN) Babazadeh, M ; Karimi, H ; Sharif University of Technology
    2011
    Abstract
    This paper presents a robust control scheme for an islanded microgrid in the presence of structured uncertainties. The microgrid consists of parallel connection of two Distributed Generation (DG) units and a passive load. The DG units are connected to the passive load by using the power electronics converters. The microgrid model is structurally uncertain due to the large perturbations in the load parameters. To deal with the uncertainties, a Linear Fractional Representation (LFR) of the parametrically uncertain system is obtained. To achieve robust performance, the μ-synthesis approach is applied to the derived LFR model to design a μ controller. The resultant controller is structurally... 

    Probabilistic dynamic multi-objective model for renewable and non-renewable distributed generation planning

    , Article IET Generation, Transmission and Distribution ; Volume 5, Issue 11 , 2011 , Pages 1173-1182 ; 17518687 (ISSN) Soroudi, A ; Caire, R ; Hadjsaid, N ; Ehsan, M ; Sharif University of Technology
    2011
    Abstract
    This study proposes a probabilistic dynamic model for multi-objective distributed generation (DG) planning, which also considers network reinforcement at presence of uncertainties associated with the load values, generated power of wind turbines and electricity market price. Monte Carlo simulation is used to deal with the mentioned uncertainties. The planning process is considered as a two-objective problem. The first objective is the minimisation of total cost including investment and operating cost of DG units, the cost paid to purchase energy from main grid and the network reinforcement costs. The second objective is defined as the minimisation of technical risk, including the probability... 

    Possibilistic evaluation of distributed generations impacts on distribution networks

    , Article IEEE Transactions on Power Systems ; Volume 26, Issue 4 , 2011 , Pages 2293-2301 ; 08858950 (ISSN) Soroudi, A ; Ehsan, M ; Caire, R ; Hadjsaid, N ; Sharif University of Technology
    Abstract
    In deregulated power systems, the distribution network operator (DNO) is not responsible for investment in distributed generation (DG) units, and they are just concerned about the best architecture ensuring a good service quality to their customers. The investment and operating decisions related to DG units are then taken by entities other than DNO which are exposed to uncertainty. The DNO should be able to evaluate the technical effects of these uncertain decisions. This paper proposes a fuzzy evaluation tool for analyzing the effect of investment and operation of DG units on active losses and the ability of distribution network in load supply at presence of uncertainties. The considered... 

    Hybrid immune-genetic algorithm method for benefit maximisation of distribution network operators and distributed generation owners in a deregulated environment

    , Article IET Generation, Transmission and Distribution ; Volume 5, Issue 9 , 2011 , Pages 961-972 ; 17518687 (ISSN) Soroudi, A ; Ehsan, M ; Caire, R ; Hadjsaid, N ; Sharif University of Technology
    Abstract
    In deregulated power systems, distribution network operators (DNO) are responsible for maintaining the proper operation and efficiency of distribution networks. This is achieved traditionally through specific investments in network components. The event of distributed generation (DG) has introduced new challenges to these distribution networks. The role of DG units must be correctly assessed to optimise the overall operating and investment cost for the whole system. However, the distributed generation owners (DGOs) have different objective functions which might be contrary to the objectives of DNO. This study presents a long-term dynamic multi-objective model for planning of distribution... 

    Multivariable control strategy for autonomous operation of a converter-based distributed generation system

    , Article 2011 IEEE/PES Power Systems Conference and Exposition, PSCE 2011, 20 March 2011 through 23 March 2011, Phoenix, AZ ; March , 2011 , Page(s): 1 - 8 ; 9781612847870 (ISBN) Nejati, A ; Nobakhti, A ; Karimi, H ; Sharif University of Technology
    2011
    Abstract
    This paper presents a control strategy for the autonomous (islanded) operation of a distributed generation (DG) unit. The DG unit supplies a balanced load through a voitage-sourced converter (VSC). To maintain the autonomous operation in the islanded mode, the DG unit should provide its dedicated load with a sinusoidal voltage with a constant magnitude and a constant frequency. The dynamic model of the islanded DG system is represented by a set of nonlinear equations. Since the objective is to regulate voltage and frequency of the islanded DG about their rated values, the nonlinear model is linearized about the operating point. The obtained linearized model represents a multivariable LTI... 

    Efficient immune-GA method for DNOs in sizing and placement of distributed generation units

    , Article European Transactions on Electrical Power ; Volume 21, Issue 3 , 2011 , Pages 1361-1375 ; 1430144X (ISSN) Soroudi, A ; Ehsan, M ; Sharif University of Technology
    Abstract
    This paper proposes a hybrid heuristic optimization method based on genetic algorithm and immune systems to maximize the benefits of Distribution Network Operators (DNOs) accrued due to sizing and placement of Distributed Generation (DG) units in distribution networks. The effects of DG units in reducing the reinforcement costs and active power losses of distribution network have been investigated. In the presented method, the integration of DG units in distribution network is done considering both technical and economical aspects. The strength of the proposed method is evaluated by applying it on a small and a realistic large scale distribution network and the results are compared with... 

    Robust decentralized control for islanded operation of two radially connected DG systems

    , Article 2010 IEEE International Symposium on Industrial Electronics, ISIE 2010, Bari, 4 July 2010 through 7 July 2010 ; July , 2010 , Pages 2272-2277 ; 9781424463916 (ISBN) Moradi, R ; Karimi, H ; Karimi Ghartemani, M ; The Institute of Electrical and Electronics Engineers (IEEE); IEEE Industrial Electronics Society (IES); IEEE Control Systems Society (CSS); Society of Instrument and Control Engineers (SICE-Japan); Politecnico di Bari ; Sharif University of Technology
    2010
    Abstract
    A decentralized servomechanism controller for islanded (autonomous) operation of radial connection of two distributed generation (DG) units is proposed in this paper. Each DG unit utilizes a voltage-sourced converter (VSC) for interface to its dedicated load. The DG units and the loads are to operate in the islanded mode of operation. Each DG unit regulates the voltage of its dedicated load in a decentralized manner. In this paper, it is first shown that the radial connection of two DG units in the islanded mode constitutes an interconnected composite system consisting of two subsystems. Moreover, the paper shows that the overall islanded system can be controlled by the local controllers,... 

    A distribution network expansion planning model considering distributed generation options and techo-economical issues

    , Article Energy ; Volume 35, Issue 8 , 2010 , Pages 3364-3374 ; 03605442 (ISSN) Soroudi, A ; Ehsan, M ; Sharif University of Technology
    Abstract
    This paper presents a dynamic multi-objective model for distribution network expansion, considering the distributed generations as non-wire solutions. The proposed model simultaneously optimizes two objectives namely, total costs and technical constraint satisfaction by finding the optimal schemes of sizing, placement and specially the dynamics (i.e., timing) of investments on DG units and/or network reinforcements over the planning period. An efficient heuristic search method is proposed to find non-dominated solutions of the formulated problem and a fuzzy satisfying method is used to choose the final solution. The effectiveness of the proposed model and search method are assessed and... 

    Multi-objective planning model for integration of distributed generations in deregulated power systems

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 34, Issue 3 , 2010 , Pages 307-324 ; 10286284 (ISSN) Soroudi, A. R ; Ehsan, M ; Sharif University of Technology
    2010
    Abstract
    This paper presents a long-term dynamic multi-objective model for distributed generation investment. The proposed model optimizes three objectives, namely active losses, costs and environmental emissions and determines the optimal schemes of sizing, sitting of DG units and specially the dynamics of investment over the planning period. The Pareto optimal solutions of the problem are found using a GA algorithm and finally a fuzzy satisfying method is applied to select the optimal solution considering the desires of the planner. The solutions of Pareto optimal front are analyzed to extract general useful information for planners about the appropriate DG technologies and placement schemes. The... 

    Decentralized control of parallel connection of two distributed generation units

    , Article 35th Annual Conference of the IEEE Industrial Electronics Society, IECON 2009, Porto, 3 November 2009 through 5 November 2009 ; 2009 , Pages 358-362 Bahrani, B ; Karimi, H ; Iravani, R ; Sharif University of Technology
    Abstract
    This paper presents a decentralized control strategy for the autonomous (islanded) operation of parallel connection of two distributed generation (DG) units. The DG units are electronically interfaced to the host grid at the same point of common coupling (PCC), where the local load is also supplied. In the grid-connected mode, the voltage-sourced converter (VSC) of each DG unit controls the exchange of real and reactive power components with the host grid, based on the conventional dq-current control strategy. In the islanded mode, one of the DG units provides voltage and frequency control for the island, and the other DG unit continues to operate with the pre-islanding dq-current control... 

    Application of scheduling models for utility management of process plants and its extension to DG networks

    , Article 2008 1st International Conference on Infrastructure Systems and Services: Building Networks for a Brighter Future, INFRA 2008, Rotterdam, 10 November 2008 through 12 November 2008 ; 2008 ; 9781424468874 (ISBN) Behdani, B ; Pishvaie, M. R ; Sharif University of Technology
    2008
    Abstract
    Scheduling models are one of the main parts of computer-aided process design research in recent years. One of the novel applications of scheduling models is their usage for in-site utility management of a process plant. It is very common for huge process plants to provide their utility by themselves; therefore, they shall make decision on utility supply and demand simultaneously. This approach can be extended to other similar systems such as distributed generation networks. In fact, it is possible to consider a DG unit as an autonomous system which is responsible for its energy (heat and power) supply and demand. Of course, for achieving its reliability and dispatchability goals, it would... 

    A heuristic trade off model for integration of distributed generations in deregulated power systems considering technical, economical and environmental issues

    , Article 2008 IEEE 2nd International Power and Energy Conference, PECon 2008, Johor Baharu, 1 December 2008 through 3 December 2008 ; 2008 , Pages 1275-1279 ; 9781424424054 (ISBN) Hekmati, A ; Nasiri, R ; Bagheri, M ; Tehrani, A. A ; Sharif University of Technology
    2008
    Abstract
    With the introduction of restructuring concepts to traditional power systems, a great deal of attention is given to the utilization of distributed generation. Since the integration of DG units has been known as an alternative for main grid as a resource for energy supply, the determination of optimal sizing and sitting is an important issue in the planning procedure of DG. This work presents a comprehensive multi-objective model for integration of distributed generations into a distribution network, regarding various technical, economical and environmental issues such as reduction of carbon dioxide emissions and investment & running costs while the bus voltages shall be kept within... 

    A combination of MADM and genetic algorithm for optimal DG allocation in power systems

    , Article 42nd International Universities Power Engineering Conference, UPEC 2007, Brighton, 4 September 2007 through 6 September 2007 ; 2007 , Pages 1031-1035 ; 1905593368 (ISBN); 9781905593361 (ISBN) Kamalinia, S ; Afsharnia, S ; Khodayar, M. E ; Rahimikian, A ; Sharbafi, M. A ; Sharif University of Technology
    2007
    Abstract
    Distributed Generation (DG) can help in reducing the cost of electricity to the customer, relieve network congestion, provide environmentally friendly energy close to load centers as well as promote system technical characteristics such as loss reduction, voltage profile enhancement, reserve mitigation and many other factors. Furthermore, its capacity is also scalable and it can provide voltage support at distribution level. The planning studies include penetration level and placement evaluation which are influenced directly by DG type. Most of the previous publications in this field chose one or two preferred parameter as basic objective and implement the optimizations in systems. But due... 

    Determining and optimizing power loss reduction in distribution feeders due to Distributed generation

    , Article 2006 IEEE PES Power Systems Conference and Exposition, PSCE 2006, Atlanta, GA, 29 October 2006 through 1 November 2006 ; 2006 , Pages 1914-1918 ; 142440178X (ISBN); 9781424401789 (ISBN) Honarvar Nazari, M ; Parniani, M ; Sharif University of Technology
    2006
    Abstract
    One of the beneficial impacts of Distributed generation (DG) units on electrical network is power loss reduction in the distribution feeder on which DG is located. In this paper the effect of DG on power losses of a distribution feeder with a combination of uniformly distributed and lumped loads is investigated, and a mathematical model of power loss reduction as a function of DG and the feeder parameters is extracted. Then, based on the derived formula, optimum conditions of utilizing and locating the DG units are obtained. © 2006 IEEE