Loading...
Search for: dissolution
0.009 seconds
Total 103 records

    Experimental study and surface complexation modeling of non-monotonic wettability behavior due to change in brine salinity/composition: Insight into anhydrite impurity in carbonates

    , Article Journal of Molecular Liquids ; Volume 365 , 2022 ; 01677322 (ISSN) Madadi Mogharrab, J ; Ayatollahi, S ; Pishvaie, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Wettability alteration as the main mechanism of improved oil recovery in carbonates during low salinity/engineered water flooding (LS/EWF) is a complex phenomenon due to high heterogeneity of rock. During LS/EWF, wettability changes when electrochemical interactions at carbonate-brine interface happen. Anhydrite impurity in carbonates is one of the most important parameters affecting the electrochemical interactions at the rock-brine interface and the wettability alteration process. Therefore, the success of LS/EWF in carbonate reservoirs lies in perceiving the role of impurities such as anhydrite, from a geochemical and dissolution point of view. Modified flotation tests (MFT) were... 

    Fabrication and evaluation of bioresorbable scaffolds for interventional cardiology application with sufficient drug release

    , Article Iranian Journal of Basic Medical Sciences ; Volume 25, Issue 3 , 2022 , Pages 372-382 ; 20083866 (ISSN) Sadeghabadi, A ; Sadrnezhaad, S. K ; Asefnejad, A ; Nemati, N. H ; Sharif University of Technology
    Mashhad University of Medical Sciences  2022
    Abstract
    Objective(s): Bioresorbable scaffolds have been advocated as the new generation in interventional cardiology because they could provide temporary scaffolds and then disappear with resorption. Although, the available stents in clinical trials exhibited biosafety, efficacy, no death, and no apparent thrombosis, Mg-substrate degradation on drug release has not been investigated. Materials and Methods: Therefore, more research has been needed to legitimize the replacement of current stents with Mg-based stents. UV-Vis spectrophotometer, scanning electron microscope (SEM), X-ray diffraction (XRD), pH measurement, H2 evolution, and corrosion tests determined the change in hybrid properties and... 

    CO2 storage in carbonate rocks: An experimental and geochemical modeling study

    , Article Journal of Geochemical Exploration ; Volume 234 , 2022 ; 03756742 (ISSN) Wang, J ; Zhao, Y ; An, Z ; Shabani, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Carbon dioxide storage in geological formations is one of the mature strategies developed for controlling global warming. This paper represents a comprehensive experimental and geochemical modeling study to analyze CO2-brine-rock interactions in a carbonate rock containing calcite and dolomite minerals. PHREEQC geochemical package has been applied for modeling the geochemical reactions in the studied porous media. Firstly, dynamic experiments are performed to calibrate the geochemical model. Then, static experiments are conducted to study the geochemical reactions in the CO2-brine-rock interaction system. This study contributes to analyzing the precipitation-dissolution and ion exchange... 

    Effect of permeability heterogeneity on the dissolution process during carbon dioxide sequestration in saline aquifers: two-and three-dimensional structures

    , Article Geomechanics and Geophysics for Geo-Energy and Geo-Resources ; Volume 8, Issue 2 , 2022 ; 23638419 (ISSN) Mahyapour, R ; Mahmoodpour, S ; Singh, M ; Omrani, S ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Abstract: The convection–diffusion process of carbon dioxide (CO2) dissolution in a saline reservoir is investigated to shed light on the effects of the permeability heterogeneity. Using sequential Gaussian simulation method, random permeability fields in two and three-dimension (2D and 3D) structures are generated. Quantitative (average amount of the dissolved CO2 and dissolution flux) and qualitative (pattern of the dissolved CO2 and velocity streamlines) measurements are used to investigate the results. A 3D structure shows a slightly higher dissolution flux than a 2D structure in the homogeneous condition. Results in the random permeability fields in 2D indicates an increase in the... 

    Dissolution and remobilization of NAPL in surfactant-enhanced aquifer remediation from microscopic scale simulations

    , Article Chemosphere ; Volume 289 , 2022 ; 00456535 (ISSN) Ramezanzadeh, M ; Aminnaji, M ; Rezanezhad, F ; Ghazanfari, M. H ; Babaei, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this paper, the dissolution and mobilization of non-aqueous phase liquid (NAPL) blobs in the Surfactant-Enhanced Aquifer Remediation (SEAR) process were upscaled using dynamic pore network modeling (PNM) of three-dimensional and unstructured networks. We considered corner flow and micro-flow mechanisms including snap-off and piston-like movement for two-phase flow. Moreover, NAPL entrapment and remobilization were evaluated using force analysis to develop the capillary desaturation curve (CDC) and predict the onset of remobilization. The corner diffusion mechanism was also applied in the modeling of interphase mass transfer to represent NAPL dissolution as the dominant mass transfer... 

    Mapping the spatiotemporal variability of salinity in the hypersaline Lake Urmia using Sentinel-2 and Landsat-8 imagery

    , Article Journal of Hydrology ; Volume 595 , 2021 ; 00221694 (ISSN) Bayati, M ; Danesh Yazdi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The spatiotemporal dynamic of salinity concentration (SC) in saline lakes is strongly dependent on the rate of water flow into the lake, water circulation, wind speed, evaporation rate, and the phenomenon of salt precipitation and dissolution. Although in-situ observations most reliably quantify water quality metrics, the spatiotemporal distribution of such data are typically limited and cannot be readily extrapolated for either long-term projections or extensive areas. Alternatively, remotely sensed imagery has facilitated less expensive and a stronger ability to estimate water quality over a wide range of spatiotemporal resolutions. This study introduces an adaptive learning model that... 

    Experimental study on enhanced oil recovery by low salinity water flooding on the fractured dolomite reservoir

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 40, Issue 5 , 2021 , Pages 1703-1719 ; 10219986 (ISSN) Ebrahimzadeh Rajaee, S ; Gerami, S ; Safekordi, A. A ; Bahramian, A. R ; Ganjeh Ghazvini, M ; Sharif University of Technology
    Iranian Institute of Research and Development in Chemical Industries  2021
    Abstract
    Enhanced Oil Recovery from carbonate reservoirs is a major challenge especially in naturally fractured formations where spontaneous imbibition is a main driving force. The Low Salinity Water Injection (LSWI) method has been suggested as one of the promising methods for enhanced oil recovery. However, the literature suggests that LSWI method, due to high dependence on rock mineralogy, injected and formation water salt concentration, and complexity of reactions is not a well-established technology in oil recovery from carbonate reservoirs. The underlying mechanism of LSWI is still not fully understood. Due to lack of LSWI study in free clay dolomite fractured reservoir, and to investigate of... 

    From as-cast to heat treated X-40 superalloy: Effect of cooling rate after partial solution treatment on microstructural evolutions and mechanical properties

    , Article Materials Science and Engineering A ; Volume 808 , 2021 ; 09215093 (ISSN) Ghasemi, A ; Kolagar, A. M ; Pouranvari, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This research study aims at investigating the influence of partial solution treatment and the subsequent cooling strategy on the microstructure and mechanical properties of an as-cast Co–Cr–W superalloy. Three different cooling scenarios were employed to explore the effect of cooling rate on the carbide reprecipitation potential from the solid solution formed during the heat treatment. The partial dissolution/breakdown of the continuous network of the Cr-rich M7C3 carbides during the partial solution treatment cycle along with their transformation to M23C6 carbides and formation of secondary carbides during the cooling stage were taken into account to discuss the obtained hardness values,... 

    Convective-reactive transport of dissolved CO2 in fractured-geological formations

    , Article International Journal of Greenhouse Gas Control ; Volume 109 , 2021 ; 17505836 (ISSN) Shafabakhsh, P ; Ataie Ashtiani, B ; Simmons, C. T ; Younes, A ; Fahs, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Carbon dioxide (CO2) storage in geologic formations is an attractive means of reducing greenhouse gas emissions. The main processes controlling the migration of CO2 in geological formations are related to convective mixing and geochemical reactions. The effects of heterogeneity on these coupled processes have been widely discussed in the literature. Recently, special attention has been devoted to fractured geological formations that can be found in several storage reservoirs. However, existing studies on the effect of fractures on the fate of CO2 neglect the key processes of geochemical reactions. This work aims at addressing this gap. Based on numerical simulations of a hypothetical... 

    Green recovery of Cu-Ni-Fe from a mixture of spent PCBs using adapted a. ferrooxidans in a bubble column bioreactor

    , Article Separation and Purification Technology ; Volume 272 , 2021 ; 13835866 (ISSN) Arshadi, M ; Pourhossein, F ; Mousavi, M ; Yaghmaei, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The high amount of base metals poses an important challenge in gold bioleaching from spent printed circuit boards (PCBs). This study aims to investigate the bioleaching of important base metals (Cu, Ni, and Fe) from a mixture of spent PCBs (E-waste) using adapted Acidithiobacillus ferrooxidans in the bubble column bioreactors. Firstly, the adaptation process is done from 1 to 15 g/L in Erlenmeyer flasks in 187 days, then the concentration of E-waste increased to 40 g/L in bubble column bioreactors in 44 days. The concurrent recovery of copper, nickel, and iron using adapted bacterium in a bioreactor was optimized by central composite design. Various effective parameters such as aeration... 

    Pore-scale simulation of calcite matrix acidizing with hydrochloric acid

    , Article SPE Journal ; Volume 26, Issue 2 , 2021 , Pages 653-666 ; 1086055X (ISSN) Haghani Galougahi, M. j ; Sharif University of Technology
    Society of Petroleum Engineers (SPE)  2021
    Abstract
    A continuum hydrodynamic model with immersed solid/fluid interface is developed for simulating calcite dissolution by hydrochloric acid (HCl) at the pore scale, and is most accurate for a mass-transfer-controlled dissolution regime under laminar flow conditions. The model uses averaged Navier-Stokes equations to model momentum transfer in porous media and adopts a theoretically developed mass-transfer formulation with assumptions. The model includes no fitting parameter and is validated using experimental results. The findings of previous research and existing models are briefly discussed and their shortcomings and advantages are elucidated. The present model is used in some pore-scale... 

    Experimentally based pore network modeling of NAPL dissolution process in heterogeneous porous media

    , Article Journal of Contaminant Hydrology ; Volume 228 , November , 2020 Khasi, S ; Ramezanzadeh, M ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Practical designs of non-aqueous phase liquids (NAPLs) remediation strategies require reliable modeling of interphase mass transfer to predict the retraction of NAPL during processes such as dissolution. In this work, the dissolution process of NAPL during two-phase flow in heterogeneous porous media is studied using pore-network modeling and micromodel experiments. A new physical-experimental approach is proposed to enhance the prediction of the dissolution process during modeling of interphase mass transfer. In this regard, the normalized average resident solute concentration is evaluated for describing the dissolution process at pore-level. To incorporate the effect of medium... 

    Modeling of reactive acid transport in fractured porous media with the Extended–FEM based on Darcy-Brinkman-Forchheimer framework

    , Article Computers and Geotechnics ; Volume 128 , December , 2020 Khoei, A. R ; Salehi Sichani, A ; Hosseini, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this paper, a fully coupled numerical model is developed based on the X-FEM technique to simulate the reactive acid transport in fractured porous media. The porous medium consists of the solid and fluid phases, in which the fluid phase includes water and acid components, and chemical reactions can be occurred between acid component and solid phase at the solid–fluid interfaces. The governing equations include the mass and momentum conservation laws for fluid phase, and the advective–diffusive transport of acid component that must be solved to obtain the primary unknowns, including the pore fluid pressure, acid concentration, and fluid velocity vector. Applying the... 

    Dissolution and conformational behavior of functionalized cellulose chains in the bulk, aqueous and non-aqueous media: A simulation study

    , Article Carbohydrate Research ; Volume 496 , October , 2020 Koochaki, A ; Moghbeli, M. R ; Rasouli, S ; Gharib Zahedi, M. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In the present study, we employ all-atom molecular dynamics simulations to investigate the dynamic behaviors and structural properties of the native and modified cellulose chains in the bulk, aqueous, and organic media. Particular attention has been directed to the role of different hydrophobic and hydrophilic functional groups as linear and branched aliphatic and also cyclic pendent groups on the solubility and packing of the cellulose chain. The various properties related to density profile, mean squared displacement, intramolecular entropy, radius of gyration, and radial distribution function were calculated. The results showed that the chain tendency toward crystallinity decreased when... 

    Effect of gas impurity on the convective dissolution of CO2 in porous media

    , Article Energy ; Volume 199 , May , 2020 Mahmoodpour, S ; Amooie, M. A ; Rostami, B ; Bahrami, F ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Growing needs for energy and the essential role of fossil fuels in energy market require attempts such as carbon dioxide (CO2) sequestration in saline aquifers to stabilize and mitigate atmospheric carbon concentrations. The possibility of co-injection of impurities along with CO2 allows for the direct disposal of flue gas and hence a significant reduction in the cost of CO2 sequestration projects by eliminating the separation process. In this study, the results of series of novel experiments in a high-pressure visual porous cell are reported, which allow for visually and quantitatively examining the dynamics of convective dissolution in brine-saturated porous media in the presence of an... 

    Elevated-temperature behaviour of LiNi0.5Co0.2Mn0.3O2 cathode modified with rGO-SiO2 composite coating

    , Article Journal of Alloys and Compounds ; Volume 843 , 2020 Razmjoo Khollari, M. A ; Khalili Azar, M ; Esmaeili, M ; Tanhaei, M ; Dolati, A ; Hosseini H, S. M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    An intense decrease in cycling performance and safety is a challenge for elevated temperature application of LiNi0.5Co0.2Mn0.3O2 (NCM) cathode material. In this paper, effect of two types of nano-coatings on improvement of elevated temperature performance of NCM cathode material has been investigated. One of the coatings contains SiO2 nanoparticles and the other one contains composite of reduced graphene oxide and SiO2 nanoparticles (rGO-SiO2). The coatings were fabricated by a facile wet chemical method. The SiO2 coated cathode material showed an excellent elevated temperature cycling stability, however, a decrease in discharge capacity and rate capability of this sample was observed. On... 

    Preparation and characterization of porous chitosan–based membrane with enhanced copper ion adsorption performance

    , Article Reactive and Functional Polymers ; Volume 154 , 2020 Sahebjamee, N ; Soltanieh, M ; Mousavi, S. M ; Heydarinasab, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Since compactness is a disadvantageous characteristic of chitosan-based membranes, two different methods were used to increase the porosity of the chitosan/poly(vinyl alcohol)/polyethyleneimine (CS/PVA/PEI) membrane, and its effect on copper ion adsorption was studied. In the first method, selective dissolution of poly(vinyl pyrrolidone) (PVP) induced porosity and for the second method, a mixed solvent system, which consists of a volatile solvent (acetone), was used to improve the porosity of the membrane. Different percentages of PVP showed inadequate performance, but acetone improved the operation efficiency of adsorption. The membranes were characterized by the analysis of FT-IR, SEM,... 

    Detailed analysis of the brine-rock interactions during low salinity water injection by a coupled geochemical-transport model

    , Article Chemical Geology ; Volume 537 , 2020 Shabani, A ; Zivar, D ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Enhanced Oil Recovery (EOR) methods have been widely used around the world to improve oil production from petroleum reservoirs. Recently, the injection of the low salinity/smart water has gained popularity among the EOR methods. Different mechanisms are believed to exist during low salinity/smart water injection, including dissolution, precipitation, and ion exchange at the rock surface. In this study, a coupled geochemical-transport model is presented for the detailed analysis and investigation of the interactions between brine, sandstone and carbonate rocks. The proposed model presents the coupling of a geochemical software (PHREEQC) and a species transport model. This coupled method makes... 

    Thermal processing strategies enabling boride dissolution and gamma prime precipitation in dissimilar nickel-based superalloys transient liquid phase bond

    , Article Materials and Design ; Volume 182 , 2019 ; 02641275 (ISSN) Ghasemi, A ; Pouranvari, M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The microstructure of dissimilar transient liquid phase bond between Hastelloy X and IN792 nickel-based superalloys is featured by lack of sufficient formation of γ′ precipitates in the bond-centerline and extensive in-situ precipitation of boride second phases in the diffusion affected zones (DAZ). This paper investigates the impact of two thermal processing strategies, using standard solution treatment and aging of IN792 (STA strategy) and using solution treatment of IN792 followed by a post-bond heat treatment utilizing solution treatment of Hastelloy X and aging treatment of IN792 (SPTA strategy) on the joint microstructure and mechanical properties. The boride precipitates in the DAZ of... 

    Experimental investigation of the influence of fluid-fluid interactions on oil recovery during low salinity water flooding

    , Article Journal of Petroleum Science and Engineering ; Volume 182 , 2019 ; 09204105 (ISSN) Mokhtari, R ; Ayatollahi, S ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    This study aims to investigate the role of fluid-fluid interactions during low salinity water flooding, using crude oil from an Iranian oil reservoir. To minimize the effects of mineral heterogeneity and wettability alteration, a synthetic sintered glass core was utilized and all coreflooding experiments were performed at low temperatures without any aging process. The effect of fluid-fluid interactions were investigated in both secondary and tertiary injection modes. pH measurements as well as UV-Vis spectroscopy and interfacial tension (IFT) analysis were performed on the effluent brine samples. Results: show that fluid-fluid interactions, mainly the dissolution of crude oil polar...