Loading...
Search for: distilled-water
0.013 seconds
Total 44 records

    Design of Improved Multi Effect Desalination (MED)Plant to Increase the Heat Transfer and Reduce the Scaling

    , M.Sc. Thesis Sharif University of Technology Afshoon, Golnaz (Author) ; Avami, Akram (Supervisor)
    Abstract
    There are different technologies for supplying water from alternative sources that meet different needs. In relation to thermal technologies such as multi-effect distillation, the highest water quality is obtained, there is no limit on the concentration of the incoming water, and there is the least need for maintenance. On the other hand, thermal technologies consume higher energy than membrane technologies. In this process, the better the heat transfer, the number of steps can be increased, and this means the production of more distilled water for the same amount of thermal energy. The distilled water layer on the surface of the heat exchanger has a high thermal resistance compared to the... 

    γ-irradiation synthesis of a smart hydrogel: Optimization using taguchi method and investigation of its swelling behavior

    , Article Scientia Iranica ; Volume 17, Issue 1 C , June , 2010 , Pages 15-23 ; 10263098 (ISSN) Pourjavadi, A ; Soleyman, R ; Bardajee, Gh. R ; Seidi, F ; Sharif University of Technology
    2010
    Abstract
    In the current work, synthesis of an environmental-sensitive superabsorbent hydrogel using γ-rays is described. Grafted polyacrylonitrile onto a homogeneous solution of starch and kappa-Carrageenan hybrid backbones created a smart material with reversible behavior. The reaction parameters (i.e. acrylonitrile, starch and kappa-Carrageenan concentration, as well as γ-irradiation time) affecting the. water absorbency of the. hydrogel were optimized using the. Taguchi method, in order to achieve a hydrogel with high swelling capacity. FTIR spectroscopy was used for confirming the. structure of the final product and the morphology of the synthesized hydrogel was examined by a scanning electron... 

    Year-round outdoor experiments on a multi-stage active solar still with different numbers of solar collectors

    , Article Applied Energy ; Volume 152 , 2015 , Pages 39-46 ; 03062619 (ISSN) Feilizadeh, M ; Karimi Estahbanati, M. R ; Jafarpur, K ; Roostaazad, R ; Feilizadeh, M ; Taghvaei, H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The present work investigated the outdoor performance of a basin type multi-stage solar still as well as the effect of collector over basin area (CBA) ratio on the distillate production. The effect of CBA was studied in outdoor experiments for the first time. The system consisted of a still coupled with one, two or three flat-plate solar collectors. In order to study the effect of CBA more accurately, the experiments were conducted in both winter and summer. In these experiments, the distilled water production of the multi-stage still was measured during the whole 24. h of a day on an hourly basis. The results revealed that in the winter, the basin coupled to one solar collector (CBA. =... 

    The Effect of fracture geometrics on breakthrough time in the immiscible displacement process through strongly oil wet fractured porous media: Experimental investigation

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 34, Issue 10 , 2012 , Pages 867-876 ; 15567036 (ISSN) Kamari, E ; Shadizadeh, S. R ; Rashtchian, D ; Sharif University of Technology
    2012
    Abstract
    The immiscible process appears to be one of the first feasible methods for the extraction of oil reserves. However, there is a lack of fundamental understanding of how fracture geometrical characteristics control the efficiency of oil recovery in this type of enhanced oil recovery technique. In this article, a series of experiments were conducted whereby the distilled water displaced n-decane in strongly oil wet glass micro-models having different fracture geometries. Breakthrough time, as a function of injected pore volume of distilled water, was measured using image analysis of the provided pictures. It has been observed that when the fractures' length is increased, the breakthrough time... 

    Temperature sensitive superabsorbent hydrogels from poly(N-t-butyl acrylamide-co-acrylamide) grafted on sodium alginate

    , Article Macromolecular Symposia ; Volume 274, Issue 1 , December , 2008 , Pages 177-183 ; 10221360 (ISSN) Pourjavadi, A ; Samadi, M ; Ghasemzadeh, H ; Sharif University of Technology
    2008
    Abstract
    Temperature-sensitive hydrogels based on N-t-butylacrylamide (TBA), acrylamide (AAm), and sodium alginate were prepared by free radical polymerization method. Methylenebisacrylamide (MBA) and amonium persulfate (APS) were applied as water soluble crosslinker and initiator, respectively. The chemical structure of the hydrogels was confirmed by FT-IR spectroscopy and thermogravimetric analysis (TCA) methods. Morphology of the samples was examined by scanning electron microscopy (SEM). By changing the initial TBA/AAm mole ratios, hydrogels with different swelling properties were obtained. The rate parameters were found to be 2.0, 2.4, and 3.5 min for the superabsorbents with AAm/TBA weight... 

    Synthesis of spherical silica/multiwall carbon nanotubes hybrid nanostructures and investigation of thermal conductivity of related nanofluids

    , Article Thermochimica Acta ; Volume 549 , 2012 , Pages 87-94 ; 00406031 (ISSN) Baghbanzadeh, M ; Rashidi, A ; Rashtchian, D ; Lotfi, R ; Amrollahi, A ; Sharif University of Technology
    2012
    Abstract
    In this study, a hybrid of silica nanosphere/multiwall carbon nanotube (MWCNT) has been synthesized by wet chemical method at room temperature. The effect of MWCNTs, silica nanospheres and hybrid nanostructures (80% silica nanosphere/20% MWCNT and 50% silica nanosphere/50% MWCNT) on the thermal conductivity of distilled water has been investigated. SDBS was used as the dispersant to stabilize nanomaterials in the aqueous suspension and its concentration was 1.5 times of the concentration of nanomaterials. As results show, by increasing the concentration of nanomaterials, effective thermal conductivity of nanofluids increased. The most and the least enhancement in the effective thermal... 

    Synthesis and investigation of swelling behavior of new agar based superabsorbent hydrogel as a candidate for agrochemical delivery

    , Article Journal of Polymer Research ; Volume 16, Issue 6 , 2009 , Pages 655-665 ; 10229760 (ISSN) Pourjavadi, A ; Farhadpour, B ; Seidi, F ; Sharif University of Technology
    2009
    Abstract
    In this investigation a new type of superabsorbent hydrogel based on agar was prepared, and the effect of the feed ratio of some components (acrylic acid, MBA, APS and agar) on the swelling capacity of the hydrogel was systematically studied. Maximum water absorbency of the optimized final product was found to be 1,100∈g/g in distilled water. The structure of the hydrogel was characterized by FT-IR method and morphology of the samples was examined by scanning electron microscopy (SEM). Swelling properties of optimized hydrogel sample in different swelling mediums were investigated. The optimum hydrogel were also loaded with potassium nitrate and its potential for controlled release of... 

    Single and double stage sintering of mechanically alloyed powder for nanostructured Ti6Al4V foams usable in cancellous scaffolds

    , Article International Heat Treatment and Surface Engineering ; Volume 7, Issue 1 , 2013 , Pages 43-48 ; 17495148 (ISSN) Sadrnezhaad, S. K ; Aryana, M ; Hassanzadeh Nemati, N ; Alizadeh, M ; Ebadifar, A ; Sharif University of Technology
    2013
    Abstract
    Mechanical alloying and sintering were used to fabricate nanostructured Ti6Al4V scaffolds of highly controllable pore geometry and fully interconnected porous network. Elemental powders were milled for different periods of time (10, 20, 30, 40 and 60 h), mixed with 40-60 vol.-% of 200-400 μm cuboidal NaCl, compacted at 500-600 MPa and sintered according to single or double stage heat treatment regimes at 790 and 950°C under vacuum. After sintering, the samples were soaked in distilled water to washout the NaCl. Foamy microstructures were obtained showing well shaped biopores and fragmentary embedded micropores. The shape of initial NaCl was copied into the biopores which had highly... 

    Roles of inorganic oxide nanoparticles on extraction efficiency of electrospun polyethylene terephthalate nanocomposite as an unbreakable fiber coating

    , Article Journal of Chromatography A ; Volume 1375 , 2015 , Pages 8-16 ; 00219673 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In the present work, the roles of inorganic oxide nanoparticles on the extraction efficiency of polyethylene terephthalate-based nanocomposites were extensively studied. Four fiber coatings based on polyethylene terephthalate nanocomposites containing different types of nanoparticles along with a pristine polyethylene terephthalate polymer were conveniently electrospun on stainless steel wires. The applicability of new fiber coatings were examined by headspace-solid phase microextraction of some environmentally important volatile organic compound such as benzene, toluene, ethylbenzene and xylene (BTEX), as model compounds, from aqueous samples. Subsequently, the extracted analytes were... 

    Reinforced polydiphenylamine nanocomposite for microextraction in packed syringe of various pesticides

    , Article Journal of Chromatography A ; Volume 1222 , January , 2012 , Pages 13-21 ; 00219673 (ISSN) Bagheri, H ; Ayazi, Z ; Es'haghi, A ; Aghakhani, A ; Sharif University of Technology
    2012
    Abstract
    Reinforced polydiphenylamine (PDPA) nanocomposite was synthesized by oxidation of diphenylamine in 4molL-1 sulfuric acid solution containing a fixed amount of carbon nanotubes (CNTs) in the presence of cetyltrimethylammonium bromide (CTAB). The surface characteristic of PDPA and PDPA/CNT nanocomposites was investigated using scanning electron microscopy (SEM). The prepared PDPA/CNT nanocomposite was used as an extraction medium for microextraction in packed syringe (MEPS) of selected pesticides from aquatic environment. The effect of CNT doping level and the presence of surfactant on the extraction capability of nanocomposite was investigated and it was revealed that when 4% (w/w) of CNT in... 

    Pore-Scale Monitoring of Wettability Alteration by Silica Nanoparticles During Polymer Flooding to Heavy Oil in a Five-Spot Glass Micromodel

    , Article Transport in Porous Media ; Volume 87, Issue 3 , 2011 , Pages 653-664 ; 01693913 (ISSN) Maghzi, A ; Mohebbi, A ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    It is well known that the oil recovery is affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of medium surfaces has remained a topic of debate in the literature. Furthermore, there is a little information of the way dispersed silica nanoparticles affect the oil recovery efficiency during polymer flooding, especially, when heavy oil is used. In this study, a series of injection experiments were performed in a five-spot glass micromodel after saturation with the heavy oil. Polyacrylamide solution and dispersed silica nanoparticles in polyacrylamide (DSNP) solution were used as injected fluids. The oil recovery as well as fluid distribution in... 

    Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation

    , Article Experimental Thermal and Fluid Science ; Vol. 40, issue , July , 2012 , p. 168-176 ; ISSN: 08941777 Maghzi, A ; Mohammadi, S ; Ghazanfari, M. H ; Kharrat, R ; Masihi, M ; Sharif University of Technology
    Abstract
    It is well known that the displacement efficiency of EOR processes is mainly affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of pores surfaces remains a topic of debate in the literature. Furthermore, a little is known about how the dispersed silica nanoparticles affect the microscopic/macroscopic recovery efficiency of heavy oils during common immiscible EOR processes such as water flooding. In this study, a series of injection experiments was performed on five-spot glass micromodel which is initially saturated with the heavy oil. Distilled water and dispersed silica nanoparticles in water (DSNW) at different values of weight percent... 

    Monitoring wettability alteration by silica nanoparticles during water flooding to heavy oils in five-spot systems: A pore-level investigation

    , Article Experimental Thermal and Fluid Science ; Volume 40 , July , 2012 , Pages 168-176 ; 08941777 (ISSN) Maghzi, A ; Mohammadi, S ; Ghazanfari, M. H ; Kharrat, R ; Masihi, M ; Sharif University of Technology
    2012
    Abstract
    It is well known that the displacement efficiency of EOR processes is mainly affected by wettability of porous medium; however, the role of nanoparticles on wettability alteration of pores surfaces remains a topic of debate in the literature. Furthermore, a little is known about how the dispersed silica nanoparticles affect the microscopic/macroscopic recovery efficiency of heavy oils during common immiscible EOR processes such as water flooding. In this study, a series of injection experiments was performed on five-spot glass micromodel which is initially saturated with the heavy oil. Distilled water and dispersed silica nanoparticles in water (DSNW) at different values of weight percent... 

    Measurements of the electrical parameters for different water samples

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 44, Issue 10 , 2011 , Pages 2175-2184 ; 02632241 (ISSN) Golnabi, H ; Sharif University of Technology
    Abstract
    The resistance and capacitance values of the water samples are measured by using two different cell probes (length 10 cm and 5 cm) and a measuring module. Measured conductivities for the different water samples are compared where the lowest conductivity is obtained for the distilled water (3.28 μS/cm) and the highest value is for the boiled water 325.91 μS/cm. Using the measured series resistance values, and by knowing the frequency (1 kHz), the imaginary part of permittivity value is also determined. The imaginary part of the permittivity for the distilled water with the long cell probe is about 0.524 × 10 -7 F/m (for the short probe is 0.523 × 10-7 F/m) while for the boiled water sample is... 

    Investigation of water electrical parameters as a function of measurement frequency using cylindrical capacitive sensors

    , Article Measurement: Journal of the International Measurement Confederation ; Volume 46, Issue 1 , 2013 , Pages 305-314 ; 02632241 (ISSN) Golnabi, H ; Sharifian, M ; Sharif University of Technology
    2013
    Abstract
    In this study electrical properties of different water liquids at frequency range of 100-2000 Hz are investigated by using the short invasive and non-invasive cylindrical capacitive sensors (CCSs). Operation of the capacitance measurement module for such probes is based on the auto balancing bridge method. Comparison of the measured capacitances and measured resistances for different water liquids shows decrease by increasing the frequency. In another study the dielectric constant of distilled water, mineral water, tap water and salt water are measured. The effects of the frequency on the resistivity, permittivity and conductance of the different water liquids are also investigated  

    Investigating the rheological properties of nanofluids of water/hybrid nanostructure of spherical silica/MWCNT

    , Article Thermochimica Acta ; Volume 578 , 20 February , 2014 , Pages 53-58 ; ISSN: 00406031 Baghbanzadeh, M ; Rashidi, A ; Soleimanisalim, A. H ; Rashtchian, D ; Sharif University of Technology
    Abstract
    Regarding the importance of rheological properties of water based drilling fluids, the effects of silica nanospheres, multiwall carbon nanotubes (MWCNTs) and two types of their hybrid, i.e. H1 (80 wt.% silica nanosphere/20 wt.% MWCNT) and H2 (50 wt.% silica nanosphere/50 wt.% MWCNT) on the viscosity and density of distilled water were investigated. According to the results, viscosity and density of the nanofluids increased with the concentration, while they were reduced by increasing the temperature. At high concentrations, the least increase in the viscosity of distilled water by adding the nanomaterials is related to H2 (8.2% increase at 1.0 wt.%). Likewise, the optimum operating... 

    Hydrothermal synthesis of aligned Hydroxyapatite nanorods with ultra-high crystallinity

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 2 , 2008 , Pages 109-116 ; 1728-144X (ISSN) Manafi, S ; Rahimipour, M. R ; Yazdani, B ; Sadrnezhaad, S. K ; Amin, M. H ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Hydroxyapatite nanorods aligned with ultrahigh crystallinity and high-yield were successfully synthesized through a hydrothermal approach. In this experiment, a new composition of cetyltrimethylammonium bromide ((CH 3(CH2)15N+(CH3) 3Br-) was designated as CTAP)/Ca(NO3) 2/ (NH4)2HPO4/NaOH and distilled water under hydrothermal condition, to synthesize single crystal HAp nanorods with diameter of 20 ± 10 nm and length of 80 ± 20 nm, was introduced. Crystal phases were determined by X-ray diffraction (XRD). Scanning electron microscope (SEM) was applied to investigate the morphology. The microstructure of the HAp products were further observed by transmission electron microscope (TEM) and high... 

    Heat transfer and entropy generation analysis of hybrid graphene/Fe3O4 ferro-nanofluid flow under the influence of a magnetic field

    , Article Powder Technology ; Volume 308 , 2017 , Pages 149-157 ; 00325910 (ISSN) Mehrali, M ; Sadeghinezhad, E ; Akhiani, A. R ; Tahan Latibari, S ; Metselaar, H. S. C ; Kherbeet, A. S ; Mehrali, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The heat transfer characteristics and entropy generation rate of hybrid graphene-magnetite nanofluids under forced laminar flow that subjected to the permanent magnetic fields were investigated. For this purpose, a nanoscale reduced graphene oxide-Fe3O4 hybrid was synthesized by using graphene oxide, iron salts and tannic acid as the reductant and stabilizer. The thermophysical and magnetic properties of the hybrid nanofluid have been widely characterized and thermal conductivity has shown an enhancement of 11%. The experimental results indicated that the heat transfer enhancement of hybrid magnetite nanofluid compared to the case of distilled was negligible when no magnetic field was... 

    Facile synthesis of NiTiO3 yellow nano-pigments with enhanced solar radiation reflection efficiency by an innovative one-step method at low temperature

    , Article Dyes and Pigments ; Volume 139 , 2017 , Pages 388-396 ; 01437208 (ISSN) Moghtada, A ; Shahrouzianfar, A ; Ashiri, R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Inorganic NiTiO3 nano-pigments have received recent attentions as possible candidates for cool materials to be used in building roofs and facades. In this paper, we have attempted to develop an innovative low temperature pathway (processed at 50 °C) for obtaining NiTiO3 nanocrystals by an ultrasound-assisted wet chemical processing method. Different characterization techniques such as X-ray diffraction (XRD), Fourier transform infrared spectrometry (FT-IR), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and diffuse reflectance spectroscopy (DRS) were used in order to characterize the size, morphology and optical responses of the obtained NiTiO3... 

    Facile synthesis of NiTiO3 yellow nano-pigments with enhanced solar radiation reflection efficiency by an innovative one-step method at low temperature

    , Article Dyes and Pigments ; Volume 123 , 2015 , Pages 92-99 ; 01437208 (ISSN) Moghtada, A ; Shahrouzianfar, A ; Ashiri, R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract Inorganic NiTiO3 nano-pigments have received recent attentions as possible candidates for cool pigment materials to be used in building roofs and facades. In this paper, we have attempted to develop an innovative low temperature (50 °C) synthesis pathway for obtaining NiTiO3 nanocrystals based on an ultrasound-assisted wet chemical processing method. The crystallite size, average particle size and band gap are found to be 11 nm, in the range of 10-20 nm and 3.72 eV, respectively. Ultraviolet-visible (UV-vis) reflectance spectra show that NiTiO3 nanoparticles have a high reflection peak at ∼580 nm, which is associated with the brilliant yellow color...