Loading...
Search for: dna-sequences
0.006 seconds
Total 30 records

    Optical pattern generator for efficient bio-data encoding in a photonic sequence comparison architecture

    , Article PloS one ; Volume 16, Issue 1 , 2021 , Pages e0245095- ; 19326203 (ISSN) Akbari Rokn Abadi, S ; Hashemi Dijujin, N ; Koohi, S ; Sharif University of Technology
    NLM (Medline)  2021
    Abstract
    In this study, optical technology is considered as SA issues' solution with the potential ability to increase the speed, overcome memory-limitation, reduce power consumption, and increase output accuracy. So we examine the effect of bio-data encoding and the creation of input images on the pattern-recognition error-rate at the output of optical Vander-lugt correlator. Moreover, we present a genetic algorithm-based coding approach, named as GAC, to minimize output noises of cross-correlating data. As a case study, we adopt the proposed coding approach within a correlation-based optical architecture for counting k-mers in a DNA string. As verified by the simulations on Salmonella whole-genome,... 

    SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks

    , Article BMC Bioinformatics ; Volume 22, Issue 1 , 2021 ; 14712105 (ISSN) Akbarinejad, S ; Hadadian Nejad Yousefi, M ; Goudarzi, M ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. Results: In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads... 

    Optical pattern generator for efficient bio-data encoding in a photonic sequence comparison architecture

    , Article PloS one ; Volume 16, Issue 1 , 2021 , Pages e0245095- ; 19326203 (ISSN) Akbari Rokn Abadi, S ; Hashemi Dijujin, N ; Koohi, S ; Sharif University of Technology
    NLM (Medline)  2021
    Abstract
    In this study, optical technology is considered as SA issues' solution with the potential ability to increase the speed, overcome memory-limitation, reduce power consumption, and increase output accuracy. So we examine the effect of bio-data encoding and the creation of input images on the pattern-recognition error-rate at the output of optical Vander-lugt correlator. Moreover, we present a genetic algorithm-based coding approach, named as GAC, to minimize output noises of cross-correlating data. As a case study, we adopt the proposed coding approach within a correlation-based optical architecture for counting k-mers in a DNA string. As verified by the simulations on Salmonella whole-genome,... 

    SVNN: an efficient PacBio-specific pipeline for structural variations calling using neural networks

    , Article BMC Bioinformatics ; Volume 22, Issue 1 , 2021 ; 14712105 (ISSN) Akbarinejad, S ; Hadadian Nejad Yousefi, M ; Goudarzi, M ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Once aligned, long-reads can be a useful source of information to identify the type and position of structural variations. However, due to the high sequencing error of long reads, long-read structural variation detection methods are far from precise in low-coverage cases. To be accurate, they need to use high-coverage data, which in turn, results in an extremely time-consuming pipeline, especially in the alignment phase. Therefore, it is of utmost importance to have a structural variation calling pipeline which is both fast and precise for low-coverage data. Results: In this paper, we present SVNN, a fast yet accurate, structural variation calling pipeline for PacBio long-reads... 

    Chaperones promote remarkable solubilization of salmonella enterica serovar enteritidis flagellin expressed in escherichia coli

    , Article Protein and Peptide Letters ; Volume 27, Issue 3 , 2020 , Pages 210-218 Bakhtiarvand, B ; Sadeghi, Z ; Tarahomjoo, S ; Yaghmaie, S ; Sharif University of Technology
    Bentham Science Publishers  2020
    Abstract
    Background: Flagellin of Salmonella enterica serovar Enteritidis (SEF) stimulates immune responses to both itself and coapplied antigens. It is therefore used in vaccine development and immunotherapy. Removal of pathogenic S. enterica ser. Enteritidis from SEF production process is advantageous due to the process safety improvement. The protein solubility analysis using SDS-PAGE indicated that 53.49% of SEF expressed in Escherichia coli formed inclusion bodies. However, the protein recovery from inclusion bodies requires a complex process with a low yield. Objective: We thus aim to study possibility of enhancing SEF expression in E. coli in soluble form using chemical and molecular... 

    OptCAM: An ultra-fast all-optical architecture for DNA variant discovery

    , Article Journal of Biophotonics ; Volume 13, Issue 1 , August , 2020 Maleki, E ; Koohi, S ; Kavehvash, Z ; Mashaghi, A ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Nowadays, the accelerated expansion of genetic data challenges speed of current DNA sequence alignment algorithms due to their electrical implementations. Essential needs of an efficient and accurate method for DNA variant discovery demand new approaches for parallel processing in real time. Fortunately, photonics, as an emerging technology in data computing, proposes optical correlation as a fast similarity measurement algorithm; while complexity of existing local alignment algorithms severely limits their applicability. Hence, in this paper, employing optical correlation for global alignment, we present an optical processing approach for local DNA sequence alignment to benefit both... 

    Private shotgun and sequencing

    , Article 2019 IEEE International Symposium on Information Theory, ISIT 2019, 7 July 2019 through 12 July 2019 ; Volume 2019-July , 2019 , Pages 171-175 ; 21578095 (ISSN); 9781538692912 (ISBN) Gholami, A ; Maddah Ali, M. A ; Abolfazl Motahari, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Current techniques in sequencing a genome allow a service provider (e.g. a sequencing company) to have full access to the genome information, and thus the privacy of individuals regarding their lifetime secret is violated. In this paper, we introduce the problem of private DNA sequencing, where the goal is to keep the DNA sequence private to the sequencer. We propose an architecture, where the task of reading fragments of DNA and the task of DNA assembly are separated, the former is done at the sequencer(s), and the later is completed at a local trusted data collector. To satisfy the privacy constraint at the sequencer and reconstruction condition at the data collector, we create an... 

    Enhanced electrochemical activity of a hollow carbon sphere/polyaniline-based electrochemical biosensor for HBV DNA marker detection

    , Article ACS Biomaterials Science and Engineering ; Volume 5, Issue 5 , 2019 , Pages 2587-2594 ; 23739878 (ISSN) Salimian, R ; Shahrokhian, S ; Panahi, S ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    Herein, we present a novel, simple, and ultrasensitive electrochemical DNA (E-DNA) sensor based on hollow carbon spheres (HCS) decorated with polyaniline (PANI). A thiolated 21-mer oligonucleotide, characteristic of HBV DNA, is immobilized via electrodeposited gold nanoparticles on HCS-PANI. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS) are used to characterize the electrochemical properties of the prepared nanocomposite. Scanning electron microscopy is employed to investigate the morphological texture of the fabricated modifier. An enhanced intrinsic signal of PANI is probed to evaluate the biosensing ability of the prepared... 

    Private shotgun DNA sequencing: A structured approach

    , Article 2019 Iran Workshop on Communication and Information Theory, IWCIT 2019, 24 April 2019 through 25 April 2019 ; 2019 ; 9781728105840 (ISBN) Gholami, A ; Maddah Ali, M. A ; Motahari, S. A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    DNA sequencing has faced a huge demand since it was first introduced as a service to the public. This service is often offloaded to the sequencing companies who will have access to full knowledge of individuals' sequences, a major violation of privacy. To address this challenge, we propose a solution, which is based on separating the process of reading the fragments of sequences, which is done at a sequencing machine, and assembling the reads, which is done at a trusted local data collector. To confuse the sequencer, in a pooled sequencing scenario, in which multiple sequences are going to be sequenced simultaneously, for each target individual, we add fragments of one non-target individual,... 

    An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment

    , Article Analytica Chimica Acta ; Volume 1048 , 2019 , Pages 31-41 ; 00032670 (ISSN) Shariati, M ; Ghorbani, M ; Sasanpour, P ; Karimizefreh, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    An impedimetric human papilloma virus (HPV) DNA biosensor based on gold nanotubes (AuNTs) in label free detection was materialized. The AuNTs decorated nanoporous polycarbonate (AuNTs-PC) template as biosensor electrode was fabricated by electrodeposition method. The single strand DNA (ss-DNA) probe was covalently immobilized onto the AuNTs-PC electrode. The hybridization of target sequences with the ss-DNA probe was observed by the electrochemical impedance spectroscopy (EIS). The biosensor showed high selectivity and could differentiate between the complementary, mismatch and non-complementary DNA sequences. The EIS measurements were matched to Randle's equivalent circuit. The... 

    IMOS: improved meta-aligner and minimap2 on spark

    , Article BMC Bioinformatics ; Volume 20, Issue 1 , 2019 ; 14712105 (ISSN) Hadadian Nejad Yousefi, M ; Goudarzi, M ; Motahari, A ; Sharif University of Technology
    BioMed Central Ltd  2019
    Abstract
    Background: Long reads provide valuable information regarding the sequence composition of genomes. Long reads are usually very noisy which renders their alignments on the reference genome a daunting task. It may take days to process datasets enough to sequence a human genome on a single node. Hence, it is of primary importance to have an aligner which can operate on distributed clusters of computers with high performance in accuracy and speed. Results: In this paper, we presented IMOS, an aligner for mapping noisy long reads to the reference genome. It can be used on a single node as well as on distributed nodes. In its single-node mode, IMOS is an Improved version of Meta-aligner (IM)... 

    Information theory of mixed population genome-wide association studies

    , Article 2018 IEEE Information Theory Workshop, ITW 2018, 25 November 2018 through 29 November 2018 ; 2019 ; 9781538635995 (ISBN) Tahmasebi, B ; Maddah Ali, M. A ; Motahari, S. A ; Sun Yat-Sen University ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Genome-Wide Association Study (GWAS) addresses the problem of associating subsequences of individuals' genomes to the observable characteristics called phenotypes. In a genome of length G, it is observed that each characteristic is only related to a specific subsequence of it with length L, called the causal subsequence. The objective is to recover the causal subsequence, using a dataset of N individuals' genomes and their observed characteristics. Recently, the problem has been investigated from an information theoretic point of view in [1]. It has been shown that there is a threshold effect for reliable learning of the causal subsequence at Gh ( N L/G ) by characterizing the capacity of... 

    Speeding up DNA sequence alignment by optical correlator

    , Article Optics and Laser Technology ; Volume 108 , 2018 , Pages 124-135 ; 00303992 (ISSN) Mozafari, F ; Babashah, H ; Koohi, S ; Kavehvash, Z ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In electronic computers, extensive amount of computations required for searching biological sequences in big databases leads to vast amount of energy consumption for electrical processing and cooling. On the other hand, optical processing is much faster than electrical counterpart, due to its parallel processing capability, at a fraction of energy consumption level and cost. In this regard, this paper proposes a correlation-based optical algorithm using metamaterial, taking advantages of optical parallel processing, to efficiently locate the edits as a means of DNA sequence comparison. Specifically, the proposed algorithm partitions the read DNA sequence into multiple overlapping intervals,... 

    All-optical DNA variant discovery utilizing extended DV-curve-based wavelength modulation

    , Article Journal of the Optical Society of America A: Optics and Image Science, and Vision ; Volume 35, Issue 11 , 2018 , Pages 1929-1940 ; 10847529 (ISSN) Maleki, E ; Babashah, H ; Koohi, S ; Kavehvash, Z ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    This paper presents a novel optical processing approach for exploring genome sequences built upon an optical correlator for global alignment and the extended dual-vector-curve-curve (DV-curve) method for local alignment. To overcome the problem of the traditional DV-curve method for presenting an accurate and simplified output, we propose the hybrid amplitude wavelength polarization optical DV-curve (HAWPOD) method, built upon the DV-curve method, to analyze genome sequences in three steps: DNA coding, alignment, and post-Analysis. For this purpose, a tunable graphene-based color filter is designed for wavelength modulation of optical signals. Moreover, all-optical implementation of the... 

    Genome-Wide Association Studies: Information Theoretic Limits of Reliable Learning

    , Article 2018 IEEE International Symposium on Information Theory, ISIT 2018, 17 June 2018 through 22 June 2018 ; Volume 2018-June , 2018 , Pages 2231-2235 ; 21578095 (ISSN); 9781538647806 (ISBN) Tahmasebi, B ; Maddah Ali, M. A ; Motahari, A. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In the problems of Genome-Wide Association Study (GWAS), the objective is to associate subsequences of individual's genomes to the observable characteristics called phenotypes. The genome containing the biological information of an individual can be represented by a sequence of length G. Many observable characteristics of the individuals can be related to a subsequence of a given length L, called causal subsequence. The environmental affects make the relation between the causal subsequence and the observable characteristics a stochastic function. Our objective in this paper is to detect the causal subsequence of a specific phenotype using a dataset of N individuals and their observed... 

    Ultrasensitive detection of cancer biomarkers using conducting polymer/electrochemically reduced graphene oxide-based biosensor: Application toward BRCA1 sensing

    , Article Sensors and Actuators, B: Chemical ; Volume 266 , 2018 , Pages 160-169 ; 09254005 (ISSN) Shahrokhian, S ; Salimian, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Breast Cancer (BRCA) is the most common threat in women worldwide. Increasing death rate of diagnosed cases is the main leading cause of designing specific genosensors for BRCA − related cancer detection. In the present study, an ultrasensitive label − free electrochemical DNA (E − DNA) sensor based on conducting polymer/reduced graphene − oxide platform has been developed for the detection of BRCA1 gene. An electrochemical method was applied as a simple and controllable technique for the electrochemical reduction of graphene oxide and also, electro − polymerization of pyrrole − 3 − carboxylic acid monomer. The results of the present work show that the polymer − coated reduced graphene −... 

    Designing a polymerase chain reaction device working with radiation and convection heat transfer

    , Article 2017 International Conference on Nanomaterials and Biomaterials, ICNB 2017, 11 December 2017 through 13 December 2017 ; Volume 350, Issue 1 , 2018 ; 17578981 (ISSN) Madadelahi, M ; Kalan, K ; Shamloo, A ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    Gene proliferation is vital for infectious and genetic diseases diagnosis from a blood sample, even before birth. In addition, DNA sequencing, genetic finger-print analyzing, and genetic mutation detecting can be mentioned as other procedures requiring gene reproduction. Polymerase chain reaction, briefly known as PCR, is a convenient and effective way to accomplish this task; where the DNA containing sample faces three temperature phases alternatively. These phases are known as denaturation, annealing, and elongation/extension which in this study -regarding the type of the primers and the target DNA sequence- are set to occur at 95, 58, and 72 degrees of Celsius. In this study, a PCR device... 

    The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology

    , Article Biosensors and Bioelectronics ; Volume 105 , 15 May , 2018 , Pages 58-64 ; 09565663 (ISSN) Shariati, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper the field-effect transistor DNA biosensor for detecting hepatitis B virus (HBV) based on indium tin oxide nanowires (ITO NWs) in label free approach has been fabricated. Because of ITO nanowires intensive conductance and functional modified surface, the probe immobilization and target hybridization were increased strongly. The high resolution transmission electron microscopy (HRTEM) measurement showed that ITO nanowires were crystalline and less than 50 nm in diameter. The single-stranded hepatitis B virus DNA (SS-DNA) was immobilized as probe on the Au-modified nanowires. The DNA targets were measured in a linear concentration range from 1fM to 10 µM. The detection limit of... 

    An ultrasensitive label free human papilloma virus DNA biosensor using gold nanotubes based on nanoporous polycarbonate in electrical alignment

    , Article Analytica Chimica Acta ; 2018 ; 00032670 (ISSN) Shariati, M ; Ghorbani, M ; Sasanpour, P ; Karimizefreh, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    An impedimetric human papilloma virus (HPV) DNA biosensor based on gold nanotubes (AuNTs) in label free detection was materialized. The AuNTs decorated nanoporous polycarbonate (AuNTs-PC) template as biosensor electrode was fabricated by electrodeposition method. The single strand DNA (ss-DNA) probe was covalently immobilized onto the AuNTs-PC electrode. The hybridization of target sequences with the ss-DNA probe was observed by the electrochemical impedance spectroscopy (EIS). The biosensor showed high selectivity and could differentiate between the complementary, mismatch and non-complementary DNA sequences. The EIS measurements were matched to Randle's equivalent circuit. The... 

    Noble metal nanoparticles in biosensors: Recent studies and applications

    , Article Nanotechnology Reviews ; Volume 6, Issue 3 , 2017 , Pages 301-329 ; 21919089 (ISSN) Malekzad, H ; Sahandi Zangabad, P ; Mirshekari, H ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Walter de Gruyter GmbH  2017
    Abstract
    The aim of this review is to cover advances in noble metal nanoparticle (MNP)-based biosensors and to outline the principles and main functions of MNPs in different classes of biosensors according to the transduction methods employed. The important biorecognition elements are enzymes, antibodies, aptamers, DNA sequences, and whole cells. The main readouts are electrochemical (amperometric and voltametric), optical (surface plasmon resonance, colorimetric, chemiluminescence, photoelectrochemical, etc.) and piezoelectric. MNPs have received attention for applications in biosensing due to their fascinating properties. These properties include a large surface area that enhances biorecognizers...