Loading...
Search for: double-frequency-ripples
0.01 seconds

    Stability Improvement and Protection of Grid-following Bidirectional Three-phase Voltage-sourced Converters under Unbalanced Grid Conditions

    , M.Sc. Thesis Sharif University of Technology Bahmani, Mehran (Author) ; Mokhtari, Hossein (Supervisor) ; Karimi, Houshang (Co-Supervisor)
    Abstract
    With the increasing expansion of modern DC loads and utilizing energy storage systems along with distributed renewable energy resources, grid-following bidirectional voltage-sourced converters (GFBVSCs) with fast dynamic performance are required. Due to the presence of single-phase loads and asymmetrical short circuit faults, unbalanced grid voltage conditions are available in the distribution system. Under unbalanced conditions, an oscillating component with a frequency of twice the grid angular frequency appears on the DC side. Removing double-frequency ripple in the DC link voltage without third harmonic current injection and reactive power injection to the grid based on the grid codes to... 

    A distortion-free phase-locked loop system for FACTS and power electronic controllers

    , Article Electric Power Systems Research ; Volume 77, Issue 8 , 2007 , Pages 1095-1100 ; 03787796 (ISSN) Karimi Ghartemani, M ; Sharif University of Technology
    2007
    Abstract
    This paper presents a single-phase phase-locked loop (PLL) system which is primarily free from the double-frequency ripples from which the conventional PLL system suffers. The proposed PLL is then extended to reject the harmonic components from the input signal and to estimate the phase-angle and frequency of the distorted input signal with no error. Three units of the proposed PLL can be used in three-phase power systems, such as FACTS and HVDC converters, to estimate the phase-angles of the individual phases with no double-frequency ripples and without sensitivity to the presence of harmonics and inter-harmonics. This makes the proposed PLL unique and desirable for applications which...