Loading...
Search for: drop-breakup
0.01 seconds
Total 30 records

    The effect of a non-uniform pulse-width modulated magnetic field with different angles on the swinging ferrofluid droplet formation

    , Article Journal of Industrial and Engineering Chemistry ; Volume 84 , 2020 , Pages 106-119 Bijarchi, M. A ; Favakeh, A ; Shafii, M. B ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2020
    Abstract
    In this study, ferrofluid droplet formation from a nozzle in the presence of a non-uniform Pulse-Width Modulated (PWM) magnetic field with different angles was studied experimentally. A Drop-on-Demand platform was introduced and three different regimes of droplet formation were observed. The regime map of the droplet formation was presented. A new type of droplet formation evolution was observed in which the droplet is formed while it is swinging around the nozzle, and the satellite droplet is not generated in this regime. The effects of five important parameters including magnetic flux density, applied magnetic frequency, duty cycle, distance between the nozzle and the center of the upper... 

    Simulation of incompressible two-phase flows with large density differences employing lattice Boltzmann and level set methods

    , Article Computer Methods in Applied Mechanics and Engineering ; Volume 198, Issue 2 , December , 2008 , Pages 223-233 ; 00457825 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2008
    Abstract
    A hybrid lattice Boltzmann and level set method (LBLSM) for two-phase immiscible fluids with large density differences is proposed. The lattice Boltzmann method is used for calculating the velocities, the interface is captured by the level set function and the surface tension force is replaced by an equivalent force field. The method can be applied to simulate two-phase fluid flows with the density ratio up to 1000. In case of zero or known pressure gradient the method is completely explicit. In order to validate the method, several examples are solved and the results are in agreement with analytical or experimental results. © 2008 Elsevier B.V. All rights reserved  

    Simulation of buoyant bubble motion in viscous flows employing lattice Boltzmann and level set methods

    , Article Scientia Iranica ; Volume 18, Issue 2 B , 2011 , Pages 231-240 ; 10263098 (ISSN) Mehravaran, M ; Hannani, S. K ; Sharif University of Technology
    2011
    Abstract
    Recently, a hybrid Lattice Boltzmann Level Set Method (LBLSM) for two-phase incompressible fluids with large density differences, in cases of negligible or a priori known pressure gradients, has been proposed. In the present work, the mentioned LBLSM method is extended to take into account pressure gradient effects. The lattice Boltzmann method is used for calculating velocities, the interface is captured by the level set function, and the surface tension is replaced by an equivalent body force. The method can be applied to simulate two-phase fluid flows with density ratios up to 1000 and viscosity ratios up to 100. In order to validate the method, the evolution and merging of rising bubbles... 

    Simulation of a falling droplet in a vertical channel with rectangular obstacles

    , Article European Journal of Mechanics, B/Fluids ; Volume 68 , March-April , 2018 , Pages 108-117 ; 09977546 (ISSN) Merdasi, A ; Ebrahimi, S ; Moosavi, A ; Shafii, M. B ; Kowsary, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Droplet microfluidic systems have attracted a large amount of research due to their numerous applications in biomedical micro-devices and drug discovery/delivery platforms. One of the most important problems in such systems is to investigate deformation, coalescence, and breakup of droplets within the channel. The present study demonstrates numerical simulation of a falling droplet subject to gravitational force in a channel with embedded rectangular obstacles. The lattice Boltzmann method incorporated using He–Chen–Zhang method for two phase flow is employed. Two rectangular obstacles with inverse aspect ratios are introduced to investigate the mechanism of breakup and deformation of the... 

    Prediction of shape and internal structure of the proximal femur using a modified level set method for structural topology optimisation

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 15, Issue 8 , 2012 , Pages 835-844 ; 10255842 (ISSN) Bahari, M. K ; Farahmand, F ; Rouhi, G ; Movahhedy, M. R ; Sharif University of Technology
    Abstract
    A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When... 

    Parametric study of droplet formation and characteristics within microfluidic devices - A case study

    , Article International Journal of Applied Mechanics ; Volume 12, Issue 7 , 2020 Salehi, S. S ; Shamloo, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    World Scientific  2020
    Abstract
    Droplet-based microfluidics technologies hold great attention in a wide range of applications, including chemical analysis, drug screening, and food industries. This work aimed to describe the effects of different physical properties of the two immiscible phases on droplet formation in a flow-focusing microfluidic device and determining proper flow rates to form a droplet within the desired size range. A numerical model was developed to solve the governing equations of two-phase flow and the results were validated with previous experimental results. The results demonstrate different types of droplet formation regimes from dripping to jetting and different production rates of droplets as a... 

    Numerical simulation of collision between two droplets in the T-shaped microchannel with lattice Boltzmann method

    , Article AIP Advances ; Volume 6, Issue 11 , 2016 ; 21583226 (ISSN) Merdasi, A ; Ebrahimi, S ; Moosavi, A ; Shafii, M. B ; Kowsary, F ; Sharif University of Technology
    American Institute of Physics Inc 
    Abstract
    In this study, the Lattice Boltzmann Method (LBM) is used to investigate the deformation of two droplets within microfluidic T-junctions (MFTD). In order to increase the accuracy the two immiscible fluids are modeled using the He-Chen-Zhang model. First, this model is applied to ensure that the surface tension effect existing between the droplets and the continuous fluid is properly implemented in the model. Then the collision and merging of the two droplets within the intersection of a T-shaped microchannel is investigated. For generating droplet formation the effects of relevant dimensionless parameters such as the Reynolds, the Weber numbers as well as a collision parameter affecting the... 

    Numerical modeling of instability and breakup of elliptical liquid jets

    , Article AIAA Journal ; Volume 58, Issue 6 , June , 2020 , Pages 2442-2449 Morad, M. R ; Nasiri, M ; Amini, G ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc  2020
    Abstract
    Numerical simulations are performed to provide an in-depth insight into the effect of instabilities on liquid jets discharging from elliptical orifices. The axis-switching phenomenon and breakup are simulated and characterized under the effect of disturbances imposed at the nozzle exit. The simulations are based on the volume of fluid approach and an adaptive meshing. A range of orifice aspect ratios from 1 to 4 at the Rayleigh breakup regime is considered. The evolution of the jet cross section and axis switching under the influence of disturbances is compared with that of nonperturbed elliptical jets. It is found that the axis-switching repetition and breakup length exponentially decrease... 

    Numerical investigation of droplets breakup in a microfluidic T-junction

    , Article Applied Mechanics and Materials ; Volume 110-116 , 2012 , Pages 3269-3277 ; 16609336 (ISSN) ; 9783037852620 (ISBN) Bedram, A ; Moosavi, A ; Int. Assoc. Comput. Sci. Inf. Technol. (IACSIT) ; Sharif University of Technology
    2012
    Abstract
    A Volume of Fluid (VOF) method is used to stdy the breakup of droplets in T-junction geometries. Symmetric T-junctions, which are used to produce equal size droplets and have many applications in pharmacy and chemical industries, are considered. Two important factors namely "breakup time" and "breakup length" that can improve the performance of these systems have been introduced. In addition a novel system which consists of an asymmetric T-junction is proposed to produce unequal size droplets. The effects of the channel width ratio and the capillary number on the size and length of the generated droplets and also the time of the generation have been studied and discussed. For simulation the... 

    Magnetic field-induced control of a compound ferrofluid droplet deformation and breakup in shear flow using a hybrid lattice Boltzmann-finite difference method

    , Article International Journal of Multiphase Flow ; Volume 146 , 2022 ; 03019322 (ISSN) Majidi, M ; Bijarchi, M. A ; Ghorbanpour Arani, A ; Rahimian, M. H ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The deformation and breakup dynamics of a compound ferrofluid droplet under shear flow and uniform magnetic field are numerically studied in this paper. Utilizing magnetic field provides the possibility to obtain better control over the compound droplet morphology and breakup in a simple shear flow. To solve the governing equations for interfaces motion and hydrodynamics, the conservative phase field lattice Boltzmann model is employed, and a finite difference approach is applied for calculating the magnetic field. To verify the accuracy of present simulations, the results are validated with those of four relevant benchmarks including liquid lens between two stratified fluids, three-phase... 

    Liquid jet trajectory and droplet path influenced by combined cross flow and electric fields

    , Article Chemical Engineering Science ; Volume 181 , 18 May , 2018 , Pages 114-121 ; 00092509 (ISSN) Rajabi, A ; Morad, M. R ; Rahbari, N ; Pejman Sereshkeh, S. R ; Razavi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This study investigates an ethanol liquid jet subjected to combination of an air crossflow and a normal electric field. The results on the liquid jet trajectory and subsequent droplets flight paths are presented. The liquid jet trajectory was found as a function of two non-dimensional quantities; the liquid jet to the crossflow momentum ratio and the electroinertial number. The electroinertial number is defined as the ratio between the liquid jet specific momentum and the electric force. A correlation is introduced for the jet trajectory in low crossflow speeds and electric field intensities. The same two quantities control the detached droplets flight paths. Satellite droplets flight angles... 

    Investigating the effects of precursor concentration and gelling parameters on droplet-based generation of Ca-Alginate microgels: identifying new stable modes of droplet formation

    , Article Materials Today Chemistry ; Volume 24 , 2022 ; 24685194 (ISSN) Besanjideh, M ; Rezaeian, M ; Mahmoudi, Z ; Shamloo, A ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Droplet-based microfluidics is an attractive approach for producing microgels due to its high potential to control the size and shape of the particles and precisely entrap the substances within the hydrogel matrix. However, the microfluidic generation of monodisperse microgels with desired structures is still challenging. Indeed, the rheological and interfacial properties of the immiscible fluids, as well as the adopted gelling strategy, play important roles in microfluidic methods. Herein, sodium alginate droplets with different concentrations are generated via a microfluidic device with a flow-focusing unit. Besides, a combined in situ and ex situ strategy is optimized to crosslink sodium... 

    Integration of spatial fuzzy clustering with level set for segmentation of 2-D angiogram

    , Article IECBES 2014, Conference Proceedings - 2014 IEEE Conference on Biomedical Engineering and Sciences: "Miri, Where Engineering in Medicine and Biology and Humanity Meet", 8 December 2014 through 10 December 2014 ; December , 2015 , Pages 309-314 ; 9781479940844 (ISBN) Ghalehnovi, M ; Zahedi, E ; Fatemizadeh, E ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Coronary angiography is a vital instrument to detect the prevailing of vascular diseases, and accurate vascular segmentation acts a crucial role for proper quantitative analysis of the vascular tree morphological features. Level set methods are popular for segmenting the coronary arteries, but their performance is related to suitable start-up and optimum setting of regulating parameters, essentially done manually. This research presents a novel fuzzy level set procedure with the objective of segmentation of the coronary artery tree in 2-D X-ray angiography as automatically. It is clever to clearly develop from the early segmentation with spatial fuzzy grouping. The adjusting parameters of... 

    Formation and breakup patterns of falling droplets

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 68, Issue 9 , Jun , 2015 , Pages 1023-1030 ; 10407782 (ISSN) Sharafatmandjoor, S ; Taeibi Rahni, M ; Azwadi Che Sidik, N ; Sharif University of Technology
    Taylor and Francis Ltd  2015
    Abstract
    Some interface front patterns of falling droplets are studied via direct numerical solution of the full Navier-Stokes equations governing the system of droplets and the ambient surrounding media as a single-fluid model. We focus on the mutual interactions of the effects of characterizing nondimensional parameters on the formation and break-up of large cylindrical droplets. The investigation of droplet cross sections and deformation angles shows that for moderate values of the Atwood number, increasing the Eötvös number explicitly increases the deformation rate in formation and breakup phenomena. Otherwise, increasing the Ohnesorge number basically amplifies the viscous effects  

    Ferrofluid droplet formation from a nozzle using alternating magnetic field with different magnetic coil positions

    , Article Journal of Magnetism and Magnetic Materials ; Volume 498 , 2020 Favakeh, A ; Bijarchi, M. A ; Shafii, M. B ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Ferrofluid has been used in many fields, such as microfluidics, droplet formation, and heat transfer, due to its potential to be attracted in the presence of a magnetic field. Droplet formation, itself, has many applications such as emulsions, 3D micro-printers, MEMS, and electro-sprays. In this study, the mechanism of ferrofluid droplet formation from the nozzle in the presence of an alternating magnetic field was investigated. The magnetic coil was fixed at different angles with respect to gravity and the effect of the alternating magnetic field and the angle of the magnetic coil axis with respect to gravity on the produced droplet volume, satellite droplet, and droplet formation frequency... 

    Ferrofluid droplet breakup process and neck evolution under steady and pulse-width modulated magnetic fields

    , Article Journal of Molecular Liquids ; Volume 343 , 2021 ; 01677322 (ISSN) Bijarchi, M.A ; Favakeh, A ; Mohammadi, K ; Akbari, A ; Shafii, M. B ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Numerous applications in engineering and biotechnology have attracted the attention of many researchers to the analysis of underlying physical phenomena during the droplet pinch-off. In this study, the neck evolution during the formation of a ferrofluid droplet from a capillary is investigated under two types of magnetic field for a drop-on-demand system. The two types are steady and Pulse-Width Modulated (PWM) magnetic fields. First, under steady magnetic field, the necking process is studied for different values of magnetic Bond number and various angles between magnetic coil centerline and gravity. Subsequently, self-similar behavior in the vicinity of the detachment moment is observed.... 

    Electrowetting induced droplet generation in T-junctions

    , Article Journal of Heat Transfer ; Volume 143, Issue 5 , 2021 ; 00221481 (ISSN) Merdasi, A ; Moosavi, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2021
    Abstract
    In this study, droplet generation in a T-junction fluidic channel device was studied by using electrowetting actuation with the consideration of different droplet forming regimes. For this purpose, the finite element method (FEM) was used to solve the unsteady Naiver-Stokes equation. In addition, the level set method was applied to capture the interface between two phases. It was shown that there was a good agreement between obtained data and other work during the process of droplet generation in the absence of electrowetting actuation which results in the decrease in the size of the droplet with increasing the velocity ratios. In the shearing regime, the effectiveness of electrowetting on... 

    Droplet dynamics in rotating flows

    , Article Advances in Colloid and Interface Science ; Volume 236 , 2016 , Pages 63-82 ; 00018686 (ISSN) Maneshian, B ; Javadi, K ; Taeibi Rahni, M ; Miller, R ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    This paper deals with investigations of droplet dynamics in rotating flows. In many previous studies droplet dynamics was analyzed in simple unidirectional flows. To fill this gap, the focus of this study is an overview on investigations of droplet dynamics in a complex rotating flow. A Lattice Boltzmann Method with high potential in simulation of two-phase unsteady flows is applied to simulate the physics of the problem in a lid-driven cavity. In spite of its simple geometry, there is a complex rotating flow field containing different vortices and shear regions. The Reynolds number based on the cavity length scale and the upper wall velocity, ReL, is considered to be 1000. We discuss here... 

    Droplet breakup in an asymmetric microfluidic T junction

    , Article European Physical Journal E ; Volume 34, Issue 8 , 2011 ; 12928941 (ISSN) Bedram, A ; Moosavi, A ; Sharif University of Technology
    2011
    Abstract
    Breakup of non-uniform droplets in an asymmetric T junction consisting of an inlet channel and two different-size outlet channels has been investigated numerically. Also, an analytical approach in the limit of the lubrication approximation has been extended to provide some analytical relations to study the system and verify the numerical results. Parameters that are important in the performance of the system have been determined and discussed. Our results indicate that smaller droplets can be produced by increasing the capillary number. As the geometry becomes symmetric the pressure drop decreases. Our results also reveal that the breakup time and the pressure drop for this system are... 

    Drop formation from a capillary tube: comparison of different bulk fluid on newtonian drops and formation of newtonian and non-newtonian drops in air using image processing

    , Article International Journal of Heat and Mass Transfer ; Volume 124 , 2018 , Pages 912-919 ; 00179310 (ISSN) Nazari, A ; Zadkazemi Derakhshi, A ; Nazari, A ; Firoozabadi, B ; Sharif University of Technology
    Abstract
    The formation of water drops as a Newtonian fluid and formation of a shear-thinning non-Newtonian fluid, Carboxyl Methyl Cellulose (CMC) from a capillary into different bulk fluids are experimentally investigated. A high speed camera is used to visualize the images of the drops and an image-processing code employed to determine the drop properties from each image. It was found that the properties of the water drops when they are drooped into the liquids bulk fluids such as toluene and n-hexane are almost the same while they differed substantially when they were drooped into the air bulk fluid. It is shown that during the formation of water drop in all three kinds of bulk fluids, the drop...