Loading...
Search for: drug-delivery
0.014 seconds
Total 357 records

    Fabrication of carboxymethyl chitosan/poly(ε-caprolactone)/doxorubicin/nickel ferrite core-shell fibers for controlled release of doxorubicin against breast cancer

    , Article Carbohydrate Polymers ; Volume 257 , 2021 ; 01448617 (ISSN) Abasalta, M ; Asefnejad, A ; Khorasani, M. T ; Saadatabadi, A. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The coaxial electrospinning for producing core-shell nanofibers due to control the release profile of drug by the shell layer has been developed. N-carboxymethyl chitosan (CMC)-polyvinyl alcohol (core)/poly(ε-caprolactone) (PCL) (shell) nanofibers were produced via coaxial electrospinning. Doxorubicin (DOX) and nickel ferrite nanoparticles were incorporated into the nanofibers for controlled release of DOX against MCF-7 breast cancer. The minimum CMC/PCL fiber diameter was found to be 300 nm by optimizing of three variables including voltage to distance ratio (1.5–2.5 kV/cm), CMC concentration (4−6 wt.%) and PCL concentration (8−12 wt.%). The synthesized core-shell fibers were characterized... 

    Fabrication of carboxymethyl chitosan/poly(ε-caprolactone)/doxorubicin/nickel ferrite core-shell fibers for controlled release of doxorubicin against breast cancer

    , Article Carbohydrate Polymers ; Volume 257 , 2021 ; 01448617 (ISSN) Abasalta, M ; Asefnejad, A ; Khorasani, M. T ; Saadatabadi, A. R ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The coaxial electrospinning for producing core-shell nanofibers due to control the release profile of drug by the shell layer has been developed. N-carboxymethyl chitosan (CMC)-polyvinyl alcohol (core)/poly(ε-caprolactone) (PCL) (shell) nanofibers were produced via coaxial electrospinning. Doxorubicin (DOX) and nickel ferrite nanoparticles were incorporated into the nanofibers for controlled release of DOX against MCF-7 breast cancer. The minimum CMC/PCL fiber diameter was found to be 300 nm by optimizing of three variables including voltage to distance ratio (1.5–2.5 kV/cm), CMC concentration (4−6 wt.%) and PCL concentration (8−12 wt.%). The synthesized core-shell fibers were characterized... 

    Adsorption and sustained release of doxorubicin from N-carboxymethyl chitosan/polyvinyl alcohol/poly(ε-caprolactone) composite and core-shell nanofibers

    , Article Journal of Drug Delivery Science and Technology ; Volume 67 , 2022 ; 17732247 (ISSN) Abasalta, M ; Asefnejad, A ; Khorasani, M. T ; Saadatabadi, A. R ; Irani, M ; Sharif University of Technology
    Editions de Sante  2022
    Abstract
    The core-shell nanofibers, produced by the coaxial electrospinning method, are good candidates for delivery of anticancer drugs due to their continuous release without initial burst release. In this work, the N-carboxymethyl chitosan (N-CMCS)-polyvinyl alcohol (PVA)/poly(ε-caprolactone) (PCL) composite and core-shell nanofibers were prepared by two-nozzle and coaxial electrospinning techniques, respectively. Doxorubicin (DOX) as an anticancer drug was loaded into the N-CMCS/PVA/PCL nanofibers fabricated by two-nozzle and coaxial electrospinning. The performance of nanofibers was compared for the adsorption and controlled release of DOX against MCF-7 breast cancer cells death in vitro. The... 

    Loading drug on nanostructured Ti6Al4V-HA for implant applications

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 31, Issue 8 , 2018 , Pages 1159-1165 ; 1728144X (ISSN) Abbaspour, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2018
    Abstract
    Arrayed Ti6Al4V nanotubes (TNT) coated with hydroxyapatite (HA) were synthesized via electrochemical anodization method. Paracetamol was loaded onto TNT-HA electrode. Effects of anodization, nanotube formation and hydroxyapatite deposition on sorption and release of the drug were investigated. Saturation time of paracetamol on the anodized samples was 30% shorter than the hydroxyapatite-coated samples. Release behavior of the loaded drug was studied by (a) plunging the probe into phosphate buffered saline (PBS), (b) sampling the drug-loaded PBS at different times and (c) analyzing the solution via ultraviolet-visible (UV-vis) spectroscopy. Results showed that HA electrodes hold higher... 

    Drug release from ion-exchange microspheres: Mathematical modeling and experimental verification

    , Article Biomaterials ; Volume 29, Issue 11 , 2008 , Pages 1654-1663 ; 01429612 (ISSN) Abdekhodaie, M. J ; Wu, X. Y ; Sharif University of Technology
    2008
    Abstract
    This paper presents for the first time a mathematical model for a mechanism of controlled drug release involving both ion exchange and transient counter diffusion of a drug and counterions. Numerical analysis was conducted to study the effect of different factors on drug release kinetics including environmental condition, material properties, and design parameters. The concentration profiles of counterions and drug species, the moving front of ion exchange, and three distinct regions inside a microsphere, namely unextracted region, ion-exchange region and drug diffusion region, were revealed by model prediction. The numerical results indicated that the rate of drug release increased with an... 

    Microfluidic-assisted fiber production: Potentials, limitations, and prospects

    , Article Biomicrofluidics ; Volume 16, Issue 6 , 2022 ; 19321058 (ISSN) Abrishamkar, A ; Nilghaz, A ; Saadatmand, M ; Naeimirad, M ; Demello, A. J ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Besides the conventional fiber production methods, microfluidics has emerged as a promising approach for the engineered spinning of fibrous materials and offers excellent potential for fiber manufacturing in a controlled and straightforward manner. This method facilitates low-speed prototype synthesis of fibers for diverse applications while providing superior control over reaction conditions, efficient use of precursor solutions, reagent mixing, and process parameters. This article reviews recent advances in microfluidic technology for the fabrication of fibrous materials with different morphologies and a variety of properties aimed at various applications. First, the basic principles, as... 

    Controlled drug delivery using the magnetic nanoparticles in non-Newtonian blood vessels

    , Article Alexandria Engineering Journal ; 2020 Abu Hamdeh, N. H ; Bantan, R. A. R ; Aalizadeh, F ; Alimoradi, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Fouling in blood flow is very common and may decrease the blood flow in human body and lead to critical health issues. Upon injury in a blood vessel, the body's defensive system triggers a process to create a blood clot called “Thrombus”, which prevents bleeding. Blood clots are formed by a combination of blood cells, platelets, and fibrins. In this study, we investigate a controlled drug delivery using the magnetic nanoparticles in blood vessels under the influence of magnetic fields. For this purpose the Maxwell and the Navier-Stokes equations for the system are solved. In contrary to the previous studies it is assumed that the blood is a non-Newtonian fluid. The number of particles has... 

    Thermo- and pH-sensitive dendrosomes as bi-phase drug delivery systems

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 9, Issue 8 , 2013 , Pages 1203-1213 ; 15499634 (ISSN) Adeli, M ; Fard, A. K ; Abedi, F ; Chegeni, B. K ; Bani, F ; Sharif University of Technology
    2013
    Abstract
    Fully supramolecular dendrosomes (FSD) as bi-phase drug delivery systems are reported in this work. For preparation of FSD, amphiphilic linear-dendritic supramolecular systems (ALDSS) have been synthesized by host-guest interactions between hyperbranched polyglycerol having β-cyclodextrin core and bi-chain polycaprolactone (BPCL) with a fluorescine focal point. Self-assembly of ALDSS in aqueous solutions led to FSD. They were able to encapsulate paclitaxel with a high loading capacity. The dendrosome-based drug delivery systems were highly sensitive to pH and temperature. They were stable at 20-37. °C and pH7-8, but dissociated and released drug at temperatures lower than 20. °C or higher... 

    Synthesis of new hybrid nanomaterials: Promising systems for cancer therapy

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 7, Issue 6 , 2011 , Pages 806-817 ; 15499634 (ISSN) Adeli, M ; Kalantari, M ; Parsamanesh, M ; Sadeghi, E ; Mahmoudi, M ; Sharif University of Technology
    2011
    Abstract
    Polyrotaxanes consisting of cyclodextrin rings, polyethylene glycol axes and quantum dot (QD) stoppers were synthesized and characterized. The molecular self-assembly of polyrotaxanes led to spindlelike nano-objects whose shape, size and position were dominated by QD stoppers. Due to their well-defined molecular self-assemblies, carbohydrate backbone, high functionality and several types of functional groups together with the high luminescence yield, synthesized hybrid nanostructures were recognized as promising candidates for biomedical applications. The potential applications of the molecular self-assemblies as drug-delivery systems was investigated by conjugation of doxorubicin (DOX) to... 

    Hybrid nanomaterials containing PAMAM, polyrotaxane and quantum dot blocks

    , Article Nano ; Volume 6, Issue 3 , June , 2011 , Pages 239-249 ; 17932920 (ISSN) Adeli, M ; Sarabi, R. S ; Sadeghi, E ; Sharif University of Technology
    2011
    Abstract
    Pseudopolyrotaxanes, Ps-PR, consisting of α-cyclodextrin rings, polyethylene glycol axes and end triazine groups were prepared and then were capped by amino-functionalized quantum dots, NH 2-QDs, to achieve polyrotaxanes. The amino-functionalized QDs stoppers of polyrotaxanes were used as core to synthesize polyamidoamine, PAMAM, dendrons divergently and hybrid nanomaterials were obtained. Synthesized hybrid nanomaterials were characterized by different spectroscopy, microscopy and thermal analysis methods. They were freely soluble in water and their aqueous solutions were stable at room temperature over several months. Due to their biocompatible backbone, high functionality and water... 

    Supramolecular hybrid nanomaterials as drug delivery systems

    , Article Supramolecular Chemistry ; Volume 23, Issue 6 , Apr , 2011 , Pages 411-418 ; 10610278 (ISSN) Adeli, M ; Hakimpour, F ; Sagvand, M ; Jaafari, M. R ; Kabiri, R ; Moshari, Z ; Sharif University of Technology
    2011
    Abstract
    Highly fluorescent and water-soluble cadmium selenide quantum dots (QDs) functionalised by thio-cyclodextrin (HS-CD) and mercaptoacetic acid (MAA) as surface coating agents (QDs-CD-MAA) were synthesised successfully. The synthesised hybrid nanomaterials, QDs-CD-MAA, were able to form water-soluble complexes with paclitaxel and folic acid. QDs and their complexes were characterised by usual spectroscopy and microscopy methods. Size and morphology of functionalised QDs were dependent on their capping agents and guest molecules. Short-term in vitro cytotoxicity tests on mouse tissue connective fibroblast adhesive cells (L929) showed that conjugation of CD molecules onto the surface of QDs... 

    Robust adaptive Lyapunov-based control of hepatitis B infection

    , Article IET Systems Biology ; Volume 12, Issue 2 , April , 2018 , Pages 62-67 ; 17518849 (ISSN) Aghajanzadeh, O ; Sharifi, M ; Tashakori, S ; Zohoor, H ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    A new robust adaptive controller is developed for the control of the hepatitis B virus (HBV) infection inside the body. The non-linear HBV model has three state variables: uninfected cells, infected cells and free viruses. A control law is designed for the antiviral therapy such that the volume of infected cells and the volume of free viruses are decreased to their desired values which are zero. One control input represents the efficiency of drug therapy in inhibiting viral production and the other control input represents the efficiency of drug therapy in blocking new infection. The proposed controller ensures the stability and robust performance in the presence of parametric and... 

    Micro and nanoscale technologies in oral drug delivery

    , Article Advanced Drug Delivery Reviews ; Volume 157 , 2020 , Pages 37-62 Ahadian, S ; Finbloom, J. A ; Mofidfar, M ; Diltemiz, S. E ; Nasrollahi, F ; Davoodi, E ; Hosseini, V ; Mylonaki, I ; Sangabathuni, S ; Montazerian, H ; Fetah, K ; Nasiri, R ; Dokmeci, M. R ; Stevens, M. M ; Desai, T. A ; Khademhosseini, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Oral administration is a pillar of the pharmaceutical industry and yet it remains challenging to administer hydrophilic therapeutics by the oral route. Smart and controlled oral drug delivery could bypass the physiological barriers that limit the oral delivery of these therapeutics. Micro- and nanoscale technologies, with an unprecedented ability to create, control, and measure micro- or nanoenvironments, have found tremendous applications in biology and medicine. In particular, significant advances have been made in using these technologies for oral drug delivery. In this review, we briefly describe biological barriers to oral drug delivery and micro and nanoscale fabrication technologies.... 

    Stimulus-responsive sequential release systems for drug and gene delivery

    , Article Nano Today ; Volume 34 , 2020 Ahmadi, S ; Rabiee, N ; Bagherzadeh, M ; Elmi, F ; Fatahi, Y ; Farjadian, F ; Baheiraei, N ; Nasseri, B ; Rabiee, M ; Tavakoli Dastjerd, N ; Valibeik, A ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In recent years, a range of studies have been conducted with the aim to design and characterize delivery systems that are able to release multiple therapeutic agents in controlled and programmed temporal sequences, or with spatial resolution inside the body. This sequential release occurs in response to different stimuli, including changes in pH, redox potential, enzyme activity, temperature gradients, light irradiation, and by applying external magnetic and electrical fields. Sequential release (SR)-based delivery systems, are often based on a range of different micro- or nanocarriers and may offer a silver bullet in the battle against various diseases, such as cancer. Their distinctive... 

    Aptamer hybrid nanocomplexes as targeting components for antibiotic/gene delivery systems and diagnostics: a review

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4237-4256 Ahmadi, S ; Arab, Z ; Safarkhani, M ; Nasseri, B ; Rabiee, M ; Tahriri, M ; Webster, T. J ; Tayebi, L ; Rabiee, N ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    With the passage of time and more advanced societies, there is a greater emergence and incidence of disease and necessity for improved treatments. In this respect, nowadays, aptamers, with their better efficiency at diagnosing and treating diseases than antibodies, are at the center of attention. Here, in this review, we first investigate aptamer function in various fields (such as the detection and remedy of pathogens, modification of nanoparticles, antibiotic delivery and gene delivery). Then, we present aptamer-conjugated nanocomplexes as the main and efficient factor in gene delivery. Finally, we focus on the targeted co-delivery of genes and drugs by nanocomplexes, as a new exciting... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; 2020 Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2020
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S.H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    A hydrogen-bonded extracellular matrix-mimicking bactericidal hydrogel with radical scavenging and hemostatic function for ph-responsive wound healing acceleration

    , Article Advanced Healthcare Materials ; Volume 10, Issue 3 , 2021 ; 21922640 (ISSN) Ahmadian, Z ; Correia, A ; Hasany, M ; Figueiredo, P ; Dobakhti, F ; Eskandari, M. R ; Hosseini, S. H ; Abiri, R ; Khorshid, S ; Hirvonen, J ; Santos, H. A ; Shahbazi, M. A ; Sharif University of Technology
    Wiley-VCH Verlag  2021
    Abstract
    Generation of reactive oxygen species, delayed blood clotting, prolonged inflammation, bacterial infection, and slow cell proliferation are the main challenges of effective wound repair. Herein, a multifunctional extracellular matrix-mimicking hydrogel is fabricated through abundant hydrogen bonding among the functional groups of gelatin and tannic acid (TA) as a green chemistry approach. The hydrogel shows adjustable physicochemical properties by altering the concentration of TA and it represents high safety features both in vitro and in vivo on fibroblasts, red blood cells, and mice organs. In addition to the merit of facile encapsulation of cell proliferation-inducing hydrophilic drugs,... 

    Amoxicillin-loaded multilayer pullulan-based nanofibers maintain long-term antibacterial properties with tunable release profile for topical skin delivery applications

    , Article International Journal of Biological Macromolecules ; Volume 215 , 2022 , Pages 413-423 ; 01418130 (ISSN) Ajalloueian, F ; Asgari, S ; Guerra, P. R ; Chamorro, C. I ; Ilchenco, O ; Piqueras, S ; Fossum, M ; Boisen, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Unique physiochemical and biological properties of nanofibers along with the choice of a wide variety of materials for both fabrication and tunable release patterns make nanofibers an ideal option for drug delivery. Loading antibacterial agents into nanofibers has attracted great deal of attention. Whilst there are several studies focusing on applying new generations of antibacterial materials, antibiotics are still the gold standard in clinical applications. Therefore, we aimed at introducing antibiotic-loaded nanofiber substrates with potential for topical skin delivery applications, reduced consumption of antibiotics and increased storage time. We applied Amoxicillin (AMX) as a model drug... 

    Folic acid-functionalized niosomal nanoparticles for selective dual-drug delivery into breast cancer cells: An in-vitro investigation

    , Article Advanced Powder Technology ; Volume 31, Issue 9 , 2020 , Pages 4064-4071 Akbarzadeh, I ; Tavakkoli Yaraki, M ; Ahmadi, S ; Chiani, M ; Nourouzian, D ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, a folic acid-functionalized niosome was formulated and loaded with letrozole and curcumin as a promising drug carrier system for chemotherapy of the breast cancer cells. The formulation process was optimized by varying the type of Span 80 and total lipid to drug ratio, where Span 80 and lipid to drug molar ratio of 10 resulted in the niosomes with maximum encapsulation of both drugs but minimum size. The developed niosomal formulation showed a great storage stability up to one month with the small changes in drug encapsulation efficiency and size during the storage. In addition, they showed a pH-dependent release behaviour with slow drug release at physiological pH (7.4) while...