Loading...
Search for: drug-dosage
0.005 seconds

    Immunotherapy of Cancer Tumors Using Model Predictive Control Approach

    , M.Sc. Thesis Sharif University of Technology Mirbak, Mohammad (Author) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    Statistics show that cancer is the second leading cause of death in the world. In recent years, several studies have shown that combination therapy is more effective than single therapy. Modeling and simulation the dynamics of cancer and the immune system and controlling the dose of cancer drugs complement preclinical trials. The aim of this study was to apply the model predictive control approach to determine the optimal dose of chemotherapy and immunotherapy drugs to treat cancerous tumors. Thus, with a preliminary analysis of the analytics, a six-state dynamic model has been selected as a hypothetical patient to advance therapeutic goals. Two sets of parameters for the hypothetical... 

    Observer-Based impulsive controller design for treatment of hepatitis C disease

    , Article Industrial and Engineering Chemistry Research ; Volume 59, Issue 43 , 2020 , Pages 19370-19382 Zeinali, S ; Shahrokhi, M ; Ibeas, A ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    In this study, an impulsive state feedback controller has been proposed for the treatment of hepatitis-C-infected patients under Pegylated-Interferon (PEG-IFN-α2b) therapy. The Neumann model has been utilized as the representative of the hepatitis C virus (HCV) dynamics. In order to consider the drug efficacy variation between injections, the pharmacokinetics/pharmacodynamics (PK/PD) equations have been included in the model. The impulsive nature of the drug injection also has been considered in the disease dynamics. In the proposed treatment method, the drug dose limitation has been addressed as an input nonlinearity. The asymptotical stability of the control method under the impulsive... 

    Incommensurate order fractional optimal control: Application to treatment of psychiatric disorders

    , Article 2013 21st Iranian Conference on Electrical Engineering ; May , 2013 , Page(s): 1 - 5 ; 9781467356343 (ISBN) Tabatabaei, S. S ; Yazdanpanah, M. J ; Tavazoei, M. S ; Sharif University of Technology
    2013
    Abstract
    The main point of this paper is to present a time domain strategy for drug dosage to treat psychiatric disorders. A time domain model of emotion is obtained from an extension of a recently developed fractional nonlinear dynamic model of happiness. First, the Fractional Optimal Control law for incommensurate multi state systems is obtained. It will be then applied as an optimal drug administration procedure in the line of psychiatric disorders treatment. Results of this paper show that optimal control scheme is a proper approach to face the difficulties of analysis and control the incommensurate systems. It can be also clearly seen from the simulation results that this approach is very... 

    Urine concentrating mechanism modelling in rat kidney inner medulla

    , Article 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering, ICBME 2016, 23 November 2016 through 25 November 2016 ; 2017 , Pages 111-116 ; 9781509034529 (ISBN) Sanatkhani, S ; Saidi, M. S ; Banazadeh, M. H ; Sharif University of Technology
    Abstract
    Physicians use charts that are prepared by experiments on animals or humans to prescribe drug dosage for patients. This method requires some precious amount of time by the Ministry of Health to approve new drugs to be used in healthcare centers. Three-dimensional modeling of the inner medulla by considering the known physiological features help us to predict the distribution of a drug or any minerals in the kidney. In this study we present modeling of the important species distribution including Na+ and urea in the rat inner medulla that influence the urine concentrating mechanism. We use a C++ code to develop the inner medulla geometry based on physiological data to better capture the... 

    Investigation of cancer response to chemotherapy: a hybrid multi-scale mathematical and computational model of the tumor microenvironment

    , Article Biomechanics and Modeling in Mechanobiology ; Volume 21, Issue 4 , 2022 , Pages 1233-1249 ; 16177959 (ISSN) Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Tumor microenvironment (TME) is a multi-scale biological environment that can control tumor dynamics with many biomechanical and biochemical factors. Investigating the physiology of TME with a heterogeneous structure and abnormal functions not only can achieve a deeper understanding of tumor behavior but also can help develop more efficient anti-cancer strategies. In this work, we develop a hybrid multi-scale mathematical model of TME to simulate the progression of a three-dimensional tumor and elucidate its response to different chemotherapy approaches. The chemotherapy approaches include multiple low dose (MLD) of anti-cancer drug, maximum tolerated dose (MTD) of anti-cancer drug,... 

    Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line)

    , Article Toxicology in Vitro ; Volume 65 , 2020 Movahedi Shad, P ; Zare Karizi, S ; Safaie Javan, R ; Mirzaie, A ; Noorbazargan, H ; Akbarzadeh, I ; Rezaie, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Oxaliplatin (OXA) has been widely used for treatment of colorectal cancer. In this study, to enhance antitumor and apoptosis efficacy, OXA was encapsulated in a novel folate conjugated hyaluronic acid coated alginate nanogels (F/HA/AL/OXA). The F/HA/AL/OXA nanogels were prepared by cross-linking process. The physico-chemical properties of F/HA/AL/OXA nanogels were characterized using scanning electron microscopy, transmission electron microscopy, fourier transform infrared spectroscopy, dynamic light scattering, and fluorescent spectrophotometry. The in-vitro antitumor activity of free OXA, AL, HA/AL, HA/AL/OXA and F/HA/AL/OXA nanogels were assessed using MTT assay against colorectal cancer... 

    Design of robust control strategy in drug and virus scheduling in nonlinear process of chemovirotherapy

    , Article Computers and Chemical Engineering ; Volume 150 , 2021 ; 00981354 (ISSN) Mobaraki, M ; Moradi, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Since the injection of the oncolytic viruses in the virotherapy process reduces the toxicity and drug resistance inherent in the chemotherapy; chemovirotherapy as a novel combination therapy has become an efficient cancer treatment. The primary purpose of this paper is to design a robust optimal control strategy for the chemovirotherapy through which the tumor density decreases to its stable condition with limited drug and virus delivery. This desired treatment should be responsive in the presence of input disturbances and parametric uncertainties. In this regard, an ODE (Ordinary Differential Equation) mathematical model of the chemovirotherapy process presenting the connection between the... 

    Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications

    , Article Ultrasonics Sonochemistry ; Volume 64 , June , 2020 Mansoorianfar, M ; Khataee, A ; Riahi, Z ; Shahin, K ; Asadnia, M ; Razmjou, A ; Hojjati Najafabadi, A ; Mei, C ; Orooji, Y ; Li, D ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Titanium does not react well with the human tissues and due to its bio-inert nature the surface modification has yet to be well-studied. In this study, the sonoelectrochemical process has been carried out to generate TiO2 nanotube arrays on implantable Ti 6–4. All the prepared nanotubes fill with the vancomycin by immersion and electrophoresis method. Drug-releasing properties, antibacterial behavior, protein adsorption and cell attachment of drug-modified nanotubes are examined by UV–vis, flow cytometry, modified disc diffusion, BSA adsorption, and FESEM, respectively. The most uniform morphology, appropriate drug release, cell viability behavior and antibacterial properties can be achieved... 

    Noble metal nanostructures in optical biosensors: basics, and their introduction to anti-doping detection

    , Article TrAC - Trends in Analytical Chemistry ; Volume 100 , 2018 , Pages 116-135 ; 01659936 (ISSN) Malekzad, H ; Sahandi Zangabad, P ; Mohammadi, H ; Sadroddini, M ; Jafari, Z ; Mahlooji, N ; Abbaspour, S ; Gholami, S ; Ghanbarpoor, M ; Pashazadeh, R ; Beyzavi, A ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Nanotechnology has illustrated significant potentials in biomolecular-sensing applications; particularly its introduction to anti-doping detection is of great importance. Illicit recreational drugs, substances that can be potentially abused, and drugs with dosage limitations according to the prohibited lists announced by the World Antidoping Agency (WADA) are becoming of increasing interest to forensic chemists. In this review, the theoretical principles of optical biosensors based on noble metal nanoparticles, and the transduction mechanism of commonly-applied plasmonic biosensors are covered. We review different classes of recently-developed plasmonic biosensors for analytic determination... 

    PH-Responsive chitosan-adorned niosome nanocarriers for co-delivery of drugs for breast cancer therapy

    , Article ACS Applied Nano Materials ; Volume 5, Issue 7 , 2022 , Pages 8811-8825 ; 25740970 (ISSN) Karimifard, S ; Rezaei, N ; Jamshidifar, E ; Moradi Falah Langeroodi, S ; Abdihaji, M ; Mansouri, A ; Hosseini, M ; Ahmadkhani, N ; Rahmati, Z ; Heydari, M ; Vosough, M ; Akbarzadeh, I ; Mostafavi, E ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Breast cancer incidence has increased in recent decades. In the present study, an optimum formulation of chitosan (CS)-adorned niosome-based nanocarriers for co-delivery of doxorubicin (DOX) and vincristine (VIN) was developed for the treatment of breast cancer to reduce drug doses and overcome multidrug resistance. The three-level Box-Behnken method was utilized to optimize the particles in terms of size, polydispersity index (PDI), entrapment efficacy (EE (%)), and percent of drug release (%). The release rate of two drugs from CS-adorned nanoparticles (DOX+VIN/Nio/CS) in acidic and physiological pH is less than uncoated niosome (DOX+VIN/Nio). In addition, acidic pH increases the release... 

    Developing hyaluronic acid microgels for sustained delivery of platelet lysate for tissue engineering applications

    , Article International Journal of Biological Macromolecules ; Volume 144 , 2020 , Pages 837-846 Jooybar, E ; Abdekhodaie, M. J ; Karperien, M ; Mousavi, A ; Alvi, M ; Dijkstra, P. J ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Platelet lysate (PL), a blood product that contains high concentrations of growth factors (GFs), can be considered as a cost-effective source of multiple GFs. In this study, hyaluronic acid (HA) based microgels were developed for delivery of PL proteins. Spherical microgel were prepared using a water in oil emulsion method. First, hyaluronic acid was grafted with tyramine groups, after which prepared microdroplets were crosslinked via an enzymatic reaction in the presence of hydrogen peroxide and horseradish peroxidase. Because of electrostatic interactions, these microgels are promising carriers for positively charged proteins entrapment like most of the GFs. When microgels are incubated in... 

    Simultaneous voltammetric determination of tramadol and acetaminophen using carbon nanoparticles modified glassy carbon electrode

    , Article Electrochimica Acta ; Volume 55, Issue 8 , 2010 , Pages 2752-2759 ; 00134686 (ISSN) Ghorbani Bidkorbeh, F ; Shahrokhian, S ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    2010
    Abstract
    A sensitive and selective electrochemical sensor was fabricated via the drop-casting of carbon nanoparticles (CNPs) suspension onto a glassy carbon electrode (GCE). The application of this sensor was investigated in simultaneous determination of acetaminophen (ACE) and tramadol (TRA) drugs in pharmaceutical dosage form and ACE determination in human plasma. In order to study the electrochemical behaviors of the drugs, cyclic and differential pulse voltammetric studies of ACE and TRA were carried out at the surfaces of the modified GCE (MGCE) and the bare GCE. The dependence of peak currents and potentials on pH, concentration and the potential scan rate were investigated for these compounds... 

    On the control of tumor growth via type-1 and interval type-2 fuzzy logic

    , Article Journal of Mechanics in Medicine and Biology ; Volume 15, Issue 5 , 2015 ; 02195194 (ISSN) Gholami, S ; Alasty, A ; Salarieh, H ; Hosseinian Sarajehlou, M ; Sharif University of Technology
    Abstract
    This paper deals with growth control of cancer cells population using type-1 and interval type-2 fuzzy logic. A type-1 fuzzy controller is designed in order to reduce the population of cancer cells, adjust the drug dosage in a manner that allows normal cells re-grow in treatment period and maintain the maximum drug delivery rate and plasma concentration of drug in an appropriate range. Two different approaches are studied. One deals with reducing the number of cancer cells without any concern about the rate of decreasing, and the other takes the rate of malignant cells damage into consideration. Due to the fact that uncertainty is an inherent part of real systems and affects controller... 

    Tunable surface plasmon resonance–based remote actuation of bimetallic core-shell nanoparticle-coated Stimuli responsive polymer for switchable chemo-photothermal synergistic cancer therapy

    , Article Journal of Pharmaceutical Sciences ; Volume 107, Issue 10 , 2018 , Pages 2618-2627 ; 00223549 (ISSN) Amoli Diva, M ; Sadighi Bonabi, R ; Pourghazi, K ; Hadilou, N ; Sharif University of Technology
    Abstract
    New dual light/temperature-responsive nanocarriers were synthesized using bimetallic plasmonic Au-Ag and Ag-Au nanoparticles (NPs) as cores of vehicles which subsequently functionalized with an upper critical solubility temperature–based poly acrylamide-co-acrylonitrile using reversible addition-fragmentation chain transfer for spatiotemporally controlled chemo-photothermal synergistic cancer therapy. The bimetallic cores were assigned to sense wavelengths close to the localized surface plasmon resonance of monometallic NP shell to produce heat which not only can increase the surrounding temperature over the upper critical solubility temperature of polymer to open its valves and promote drug... 

    Controlling Atrial fibrillation using Cohen's model

    , Article 2011 18th Iranian Conference of Biomedical Engineering, ICBME 2011, 14 December 2011 through 16 December 2011 ; December , 2011 , Pages 60-63 ; 9781467310055 (ISBN) Aghajari, S ; Bahrami, F ; Sharif University of Technology
    2011
    Abstract
    Drug administration using infusion pumps can find application in treating patients with arrhythmias. These pumps can obviate the need to use drugs several times a day and automatically adapt the dosage to patient situation. Considering the importance of administration of right dosage, a perfect-controlled pump is needed to approach this goal. This paper focuses on controlling Atrial fibrillation (AF) arrhythmia. The abnormal heart rhythm that affects RR interval sequence and there have been some attempts to model these effects. One of these models is proposed by Cohen and colleges. Searching through the variables of this model, selecting the potential control variable (the one that its...