Loading...
Search for: dynamic-behavior
0.014 seconds
Total 125 records

    Modeling of tail dynamic behavior and trajectory control of a fish-robot using fuzzy logic

    , Article IEEE International Conference on Robotics and Biomimetics ; 2010 , pp. 885-890 ; ISBN: 9781424493173 Alamdar, A. R ; Dehghani, M. R ; Alasty, A ; Sharif University of Technology
    Abstract
    To have a complete model of a thunniform Fish-Robot, models of both body and tail are required. The dynamic model of the body is developed according to the parameters of a thunniform Fish-Robot built in MIT University, while, as the main part of this paper, the dynamic model of the tail is developed using fuzzy logic. Using experimental data and table look-up scheme, a fuzzy black box is introduced that gives the value of thrust force generated for any value of the Fish-Robot's input parameters: frequency of tail oscillation, amplitude of tail oscillation and speed of the Fish-Robot. In the second part, a trajectory fuzzy controller is designed for the Fish-Robot. The output of trajectory... 

    Dme direct synthesis from syngas in a large-scale three-phase slurry bubble column reactor: transient modeling

    , Article Chemical Engineering Communications ; Vol. 201, issue. 5 , Nov , 2014 , pp. 612-634 ; ISSN: 00986445 Papari, S ; Kazemeini, M ; Fattahi, M ; Fatahi, M ; Sharif University of Technology
    Abstract
    In this research, a new transient mathematical model based upon tanks-in-series configuration was developed to simulate the direct synthesis of dimethyl ether (DME) from syngas in a commercial-scale slurry bubble column reactor. A comparison between the simulation results and experimental data showed that the applied model might acceptably describe the behavior of the slurry reactor. Furthermore, simulation results in the heterogeneous bubble flow regime indicated that the proposed model with 10 tanks-in-series provided the optimum condition. Utilizing this transient model and considering catalyst deactivation, the effect of operating conditions on DME productivity and CO conversion were... 

    Comprehensive modeling and CFD simulation of absorption of CO2 and H2S by MEA solution in hollow fiber membrane reactors

    , Article AIChE Journal ; Vol. 60, issue. 2 , 2014 , pp. 657-672 ; ISSN: 00011541 Amrei, S. M. H. H ; Memardoost, S ; Dehkordi, A. M ; Sharif University of Technology
    Abstract
    A comprehensive mathematical model has been developed for the simulation of simultaneous chemical absorption of carbon dioxide and hydrogen sulfide by means of Monoethanolamine (MEA) aqueous solution in hollow fiber membrane reactors is described. In this regard, a perfect model considering the entrance regions of momentum, energy, and mass transfers was developed. Computational Fluid Dynamics (CFD) techniques were applied to solve governing equations, and the model predictions were validated against experimental data reported in the literature and excellent agreement was found. Effects of different disturbances on the dynamic behavior of the reactor were investigated. Moreover, effects of... 

    A three dimensional CFD simulation and optimization of direct DME synthesis in a fixed bed reactor

    , Article Petroleum Science ; Vol. 11, issue. 2 , 2014 , pp. 323-330 ; ISSN: 1672-5107 Moradi, F ; Kazemeini, M ; Fattahi, M ; Sharif University of Technology
    Abstract
    In this study, a comprehensive three-dimensional dynamic model was developed for simulating the flow behavior and catalytic coupling reactions for direct synthesis of dimethyl ether (DME) from syngas including CO2 in a fixed bed reactor at commercial scale under both adiabatic and isothermal conditions. For this purpose, a computational fluid dynamic (CFD) simulation was carried out through which the standard k-e{open} model with 10% turbulence tolerations was implemented. At first, an adiabatic fixed bed reactor was simulated and the obtained results were compared with those of an equivalent commercial slurry reactor. Then the concentration and temperature profiles along the reactor were... 

    Nonlinear dynamics of electrostatically actuated micro-resonator: Analytical solution by homotopy perturbation method

    , Article IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM ; July , 2014 , p. 1284-1289 Tajaddodianfar, F ; Yazdi, M. H ; Pishkenari, H. N ; Miandoab, E. M ; Sharif University of Technology
    Abstract
    Dynamic behavior of a electrostatically actuated MEMS resonator is investigated. A double clamped micro-beam under distributed DC and AC actuation is used. Corresponding single degree of freedom model is derived using Galerkin's decomposition method. Homotopy Perturbation Method (HPM) is implemented in order to derive analytical expression for frequency response of the micro-resonator. Comparison of the obtained results with the numerical simulations confirms that HPM agrees very well with numerical simulations for a wide range of parameters. Obtained analytical solution can be used for design and optimization of MEMS resonators  

    Dynamics of scratch drive actuators during stepwise motion

    , Article Applied Mechanics and Materials ; Vol. 664, issue , 2014 , p. 104-110 Abtahi, M ; Vossoughi, G ; Meghdari, A ; Sharif University of Technology
    Abstract
    In this paper, a comprehensive model is used to describe dynamic behavior of SDA and its components during stepwise motion. In this model, Hamilton’s principle and Newton's method are used to extract dynamic equations of the SDA plate and dynamic equation for the linear motion of SDA. Comparison between the modeling results and available experimental data shows that this model is very effective in predicting some design objectives such as step size and output force for this type of actuators  

    Fluid-solid interaction in electrostatically actuated carbon nanotubes

    , Article Journal of Mechanical Science and Technology ; Vol. 28, issue. 4 , 2014 , p. 1431-1439 Fakhrabadi, M. M. S ; Rastgoo, A ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    This paper deals with investigation of fluid flow on static and dynamic behaviors of carbon nanotubes under electrostatic actuation. The effects of various fluid parameters including fluid viscosity, velocity, pressure and mass ratio on the deflection and pull-in behaviors of the cantilever and doubly clamped carbon nanotubes are studied. Furthermore, the effects of temperature variation on the static and dynamic pull-in voltages of the doubly clamped carbon nanotubes are reported. The results reveal that altering the fluid parameters significantly changes the mechanical and pull-in behaviors. Hence, the proposed system can be applied properly as a nano fluidic sensor to sense the various... 

    Nonlinear analysis of carbon nanotube-based nanoelectronics devices

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Vol. 228, issue. 13 , 2014 , p. 2426-2439 Fakhrabadi, M. M. S ; Rastgoo, A ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    The paper deals with the investigation of nonlinear static and dynamic behaviors of electrostatically actuated carbon nanotubes with different geometries and boundary conditions. The deflection and pull-in properties are studied in detail in the presence of DC and combined DC+AC electrostatic voltages accompanying the interatomic interactions. The considered nano system can be applied in a wide range of nanoelectronics devices such as nano switches, nano resonators, nano transistors, nano capacitors and random access memories. Moreover, a useful mathematical model of the nano sensor application of the studied nano system to sense the stiffness of the nano particles is presented  

    Analysis of transient response and instability in fiber ring resonators containing an erbium-doped fiber amplifier and quantum dot-doped fiber saturable absorber

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 30, Issue 12 , December , 2013 , Pages 3215-3224 ; 07403224 (ISSN) Tofighi, S ; Bahrampour, A. R ; Sharif University of Technology
    Optical Society of American (OSA)  2013
    Abstract
    In this paper, the transient response of a double coupler fiber ring resonator containing an erbium-doped fiber amplifier (EDFA) in half part of the fiber ring resonator and a quantum dot-doped fiber (QDF) saturable absorber in the other half, is investigated. It is demonstrated that, depending on the device parameters and the input power of the signal and pump, various types of dynamic behaviors (such as bistability, monostability, and regenerative pulsation) can be observed in this intrinsic, optical bistable device. The proposed device can be exploited by optical communication networks to realize all-optical functionalities  

    Effects of crimping on mechanical performance of nitinol stent designed for femoral artery: Finite element analysis

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 11 , 2013 , Pages 3228-3236 ; 10599495 (ISSN) Nematzadeh, F ; Sadrnezhaad, S. K ; Sharif University of Technology
    2013
    Abstract
    Nitinol stents are used to minimize improper dynamic behavior, low twistability, and inadequate radial mechanical strength of femoral artery stents. In this study, finite element method is used to investigate the effect of crimping and Austenite finish temperature (A f) of Nitinol on mechanical performance of Z-shaped open-cell femoral stent under crimping conditions. Results show that low A f Nitinol has better mechanical and clinical performance due to small chronic outward force, large radial resistive force, and appropriate superelastic behavior  

    A Three dimensional dynamic CFD simulation for the direct dme production in a fixed bed reactor

    , Article Computer Aided Chemical Engineering ; Volume 32 , June , 2013 , Pages 247-252 ; 15707946 (ISSN) Moradi, F ; Kazemeini, M ; Vafajoo, L ; Fattahi, M ; Sharif University of Technology
    2013
    Abstract
    Dimethyl ether (DME) as a clean fuel seems to be a superior candidate for high-quality diesel fuel in near future. In this study, a comprehensive three-dimensional dynamic heterogeneous model developed to simulate the flow behavior and catalytic coupling reactions for synthesis of the DME from hydrogenation of the CO and CO2, dehydration of methanol to dimethyl ether and water gas shift reaction in a fixed bed reactor. For this purpose, a CFD simulation was articulated where the standard k-ε model with 10% turbulence tolerations implemented. Then the concentration and temperature profiles along the reactor were determined. It was revealed that under conditions considered, a single phase... 

    Strain gradient formulation of functionally graded nonlinear beams

    , Article International Journal of Engineering Science ; Volume 65 , 2013 , Pages 49-63 ; 00207225 (ISSN) Rahaeifard, M ; Kahrobaiyan, M. H ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    2013
    Abstract
    In this paper size-dependent static and dynamic behavior of nonlinear Euler-Bernoulli beams made of functionally graded materials (FGMs) is investigated on the basis of the strain gradient theory. The volume fraction of the material constituents is assumed to be varying through the thickness of the beam based on a power law. As a consequence, the material properties of the microbeam (including length scales) are varying in the direction of the beam thickness. To develop the model, the usual simplifying assumption which considers the length scale parameter to be constant through the thickness is avoided and equivalent length scale parameters are introduced for functionally graded microbeams... 

    3D Dynamic analysis of a flexible deploying arm subjected to base angular motions

    , Article International Journal of Structural Stability and Dynamics ; Volume 13, Issue 2 , March , 2013 ; 02194554 (ISSN) Ghaleh, P. B ; Malaek, S. M ; Sharif University of Technology
    2013
    Abstract
    Problems related to the three-dimensional (3D) dynamics of the deploying flexible arms subjected to base angular motions are studied with simulated tip payloads and actual deployment trajectories. To facilitate the solution, an equivalent dynamical system is developed by introducing the inertial reaction forces on the arm, while the equations of motion are derived in the non-Newtonian reference frame attached to the arm. The dynamic behavior of the arm is investigated both by the finite element and assumed Modes methods for the purpose of verification. This study reveals that base angular motions lead to considerable couplings between the two lateral displacements and axial motions.... 

    Dynamic analysis of a functionally graded simply supported Euler-Bernoulli beam subjected to a moving oscillator

    , Article Acta Mechanica ; Volume 224, Issue 2 , 2013 , Pages 425-446 ; 00015970 (ISSN) Rajabi, K ; Kargarnovin, M. H ; Gharini, M ; Sharif University of Technology
    2013
    Abstract
    The dynamic behavior of a functionally graded (FG) simply supported Euler-Bernoulli beam subjected to a moving oscillator has been investigated in this paper. The Young's modulus and the mass density of the FG beam vary continuously in the thickness direction according to the power-law model. The system of equations of motion is derived by using Hamilton's principle. By employing Petrov-Galerkin method, the system of fourth-order partial differential equations of motion has been reduced to a system of second-order ordinary differential equations. The resulting equations are solved using Runge-Kutta numerical scheme. In this study, the effect of the various parameters such as power-law... 

    Static and dynamic analysis of a clamp-clamp nano-beam under electrostatic actuation and detection considering intermolecular forces

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE) ; Volume 10 , 2013 ; 9780791856390 (ISBN) Mojahedi, M ; Barari, A ; Firoozbakhsh, K ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2013
    Abstract
    Micro/nano gyroscopes which can measure angular rate or angle are types of merging gyroscope technology with MEMS/NEMS technology. They have extensively used in many fields of engineering, such as automotive, aerospace, robotics and consumer electronics. There are many studies of a variety of gyroscopes with various drive and detect methods and different resonator structures in last years. In case of electrostatically actuated and detected beam micro/nano-gyroscopes, DC voltages are applied in driving and sensing directions and AC voltage is utilized in driving direction in order to excite drive oscillation. The intermolecular surface forces are especially significant when the gyroscopes are... 

    Analysis and enhancement of low-voltage ride-through capability of brushless doubly fed induction generator

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 3 , March , 2013 , Pages 1146-1155 ; 02780046 (ISSN) Tohidi, S ; Oraee, H ; Zolghadri, M. R ; Shao, S ; Tavner, P ; Sharif University of Technology
    2013
    Abstract
    This paper discusses the dynamic behavior of the brushless doubly fed induction generator during the grid faults which lead to a decrease in the generator's terminal voltage. The variation of the fluxes, back EMFs, and currents are analyzed during and after the voltage dip. Furthermore, two alternative approaches are proposed to improve the generator ride-through capability using crowbar and series dynamic resistor circuits. Appropriate values for their resistances are calculated analytically. Finally, the coupled circuit model and the generator's speed and reactive power controllers are simulated to validate the theoretical results and the effectiveness of the proposed solutions. Moreover,... 

    Mechanical behavior analysis of micro-scaled functionally graded timoshenko beams by the strain gradient theory

    , Article Proceedings of the ASME Design Engineering Technical Conference ; Volume 5 , 2012 , Pages 67-73 ; 9780791845042 (ISBN) Tajalli, S. A ; Kahrobaiyan, M. H ; Rahaeifard, M ; Ahmadian, M. T ; Movahhedy, M. R ; Akbari, J ; Sharif University of Technology
    2012
    Abstract
    In this paper, a size-dependent formulation is developed for Timoshenko beams made of functionally graded materials (FGM). The developed formulation is based on the strain gradient theory;a non-classical continuum theory able to capture the size-effect in micro-scaled structures. Considering the material length scale parameters of the FG beams vary through the thickness, the new equivalent length scale parameters are proposed as functions of the constituents' length scale parameters to describe the size-dependent static and dynamic behavior of FG microbeams. The governing differential equations of equilibrium and both classical and nonclassical sets of boundary conditions are derived for the... 

    Column study of Cr (VI) adsorption onto modified silica-polyacrylamide microspheres composite

    , Article Chemical Engineering Journal ; Volume 210 , 2012 , Pages 280-288 ; 13858947 (ISSN) Karimi, M ; Shojaei, A ; Nematollahzadeh, A ; Abdekhodaie, M. J ; Sharif University of Technology
    2012
    Abstract
    Adsorption of Cr (VI) from aqueous solution was studied using a continuous fixed bed column which is packed with a new micro-porous composite particle developed in this study. This composite particle is composed of silica porous particle in which acrylamide is polymerized within the pore regions of the silica particles. The composite particle was supposed to maintain the mechanical properties of polyacrylamide as efficient absorbent to serve appropriately in the continuous processes. In order to enhance the adsorption capacity of the composite particle, it was modified with ethylenediamine. Scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy (FT-IR) and... 

    Multivariate curve resolution alternating least-squares as a tool for analyzing crude oil extracted asphaltene samples

    , Article Energy and Fuels ; Volume 26, Issue 9 , 2012 , Pages 5663-5671 ; 08870624 (ISSN) Ghatee, M. H ; Hemmateenejad, B ; Sedghamiz, T ; Khosousi, T ; Ayatollahi, S ; Seiedi, O ; Sayyad Amin, J ; Sharif University of Technology
    ACS  2012
    Abstract
    Asphaltene deposition in the early stage of the oil reservoir life and later during any stimulation process emerges critical problems to the petroleum industry. Deposition of asphaltene aggregates raises strict problems in industries and demands markedly a practical and scientific knowledge of the mechanisms of aggregation and precipitation. Fluorescence emission spectroscopy has been widely used to illuminate the fundamental properties of crude oils and asphaltenes. It proposes analysis of some details of equilibrium, dynamic behavior, and aggregation composition of crude oil under specific condition. In this work, the fluorescence spectra of crude-oil extracted asphaltene samples were... 

    Power management strategy for a multi-hybrid fuel cell/energy storage power generation systems

    , Article 2012 3rd Power Electronics and Drive Systems Technology, PEDSTC 2012, 15 February 2012 through 16 February 2012 ; February , 2012 , Pages 354-359 ; 9781467301114 (ISBN) Ghazanfari, A ; Hamzeh, M ; Mokhtari, H ; Sharif University of Technology
    2012
    Abstract
    This paper depicts a new configuration for modular hybrid power conversion systems, namely, multi-hybrid generation system (MHGS), and parallel connection at the output, such that the converter of each unit shares the load current equally. This is a significant step towards realizing a modular power conversion system architecture, where smaller units can be connected in any series/parallel grouping to realize any required unit specifications. The supercapacitor (SC) as a complementary source is used to compensate for the slow transient response of the fuel cell (FC) as a main power source. It assists the FC to meet the grid power demand in order to achieve a better performance and dynamic...