Loading...
Search for: dynamic-range
0.008 seconds
Total 34 records

    The Analysis of HDR Video Reconstruction Methods

    , M.Sc. Thesis Sharif University of Technology Ghaffari, Mahdi (Author) ; Amini, Arash (Supervisor)
    Abstract
    The conventional cameras and displays do not have the ability to record and display the full brightness of the world around us. These deficiencies have led to the development of methods known as High Dynamic Range Imaging. Most of the work done in this field falls into two groups: compression of the light range and its expansion. In compression, the brightness range is intended to display content with a high dynamic range in simple displays. But the goal of expanding the brightness range is to reconstruct HDR content from a low dynamic range one. In addition to the above classification, this field is also categorized based on the type of content (image or video). In this study, the... 

    HDR Image Reconstruction from a Single-Exposure LDR Image

    , M.Sc. Thesis Sharif University of Technology Shahbazi, Mohammad (Author) ; Amini, Arash (Supervisor) ; Mohammadzadeh, Nargesolhoda (Co-Supervisor)
    Abstract
    High dynamic range (HDR) images provide more realistic experience in displaying real-world scenes than conventional low dynamic range (LDR) images by providing much more detailed luminance information; However, most imaging content is still available in low dynamic range. Inverse tonemapping is known as the problem of inferring an HDR image from a single-exposure LDR image in which the lost data caused by saturation of bright parts and quantization must be reconstructed.To address this problem, in this thesis, two fully-automatic architectures based on convolutional neural networks, are proposed. Both these architectures utilize a number of convolutional auto-encoders as... 

    Amine modified magnetic polystyrene for extraction of drugs from urine samples

    , Article Journal of Chromatography A ; Volume 1602 , 2019 , Pages 107-116 ; 00219673 (ISSN) Zeinali, S ; Maleki, M ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Polystyrene is one of the best candidates as the extracting medium due to its high stability in different media and acceptable extraction capability. However, the hydrophobic nature and low wettability of polystyrene limits its application to non–polar analytes. To resolve this limitation, in this project, amine groups were chemically attached to the surface of magnetic polystyrene. The resulting hydrophilic magnetic particles were expected to be capable of extracting both polar and non–polar analytes. Non–steroidal anti–inflammatory drugs (NSAIDs) were chosen for testing the applicability of modified magnetic polystyrene according to the importance of their analysis and also their wide... 

    Construction of a modified carbon paste electrode based on TiO2 nanoparticles for the determination of gallic acid

    , Article Journal of Solid State Electrochemistry ; Volume 17, Issue 1 , 2013 , Pages 157-165 ; 14328488 (ISSN) Tashkhourian, J ; Nami Ana, S. F ; Hashemnia, S ; Hormozi Nezhad, M. R ; Sharif University of Technology
    2013
    Abstract
    A modified carbon paste electrode was prepared by incorporating the TiO2 nanoparticles in the carbon paste matrix. The electrochemical behavior of gallic acid (GA) is investigated on the surface of the electrode using cyclic voltammetry and differential pulse voltammetry. The surface morphology of the prepared electrode was characterized using the scanning electron microscopy. The results indicate that the electrochemical response of GA is improved significantly at the modified electrode compared with the unmodified electrode. Furthermore, the capabilities of electron transfer on these two electrodes were also investigated by electrochemical impedance spectroscopy. Under the optimized... 

    Construction of Pt nanoparticle-decorated graphene nanosheets and carbon nanospheres nanocomposite-modified electrodes: Application to ultrasensitive electrochemical determination of cefepime

    , Article RSC Advances ; Volume 4, Issue 15 , 2014 , Pages 7786-7794 ; ISSN: 20462069 Shahrokhian, S ; Hosseini Nassab, N ; Ghalkhani, M ; Sharif University of Technology
    Abstract
    A novel ultrasensitive modified electrode was fabricated with a graphene nanosheets and carbon nanospheres (GNS-CNS)-based nanocomposite film as a powerful platform. Pt nanoparticles (PtNPs) were simply electrodeposited onto the GNS-CNS-coated glassy carbon electrode creating a PtNPs/GNS-CNS hybrid nanocomposite modified electrode. Scanning electron microscopy, energy dispersive X-ray spectroscopy and linear sweep voltammetry (LSV) techniques were used for the characterization of the prepared modified electrode. The results of investigation of electrochemical response characteristics of cefepime (CP) revealed a considerable improvement in the oxidation peak current of CP on PtNPs/GNS-CNS/GCE... 

    Electrochemical determinations of 6-mercaptopurine on the surface of a carbon nanotube-paste electrode modified with a cobalt salophen complex

    , Article Journal of Solid State Electrochemistry ; Volume 16, Issue 4 , April , 2012 , Pages 1643-1650 ; 14328488 (ISSN) Shahrokhian, S ; Ghorbani Bidkorbeh, F ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    2012
    Abstract
    A mixture of multi-walled carbon nanotube/graphite paste electrode modified with a salophen complex of cobalt was prepared and was applied for the study of the electrochemical behavior of 6-mercaptopurine (MP) using cyclic and differential pulse voltammetry (DPV). An excellent electrocatalytic activity toward the oxidation of MP was achieved, which led to a considerable lowering in the anodic overpotential and remarkable increase in the response sensitivity in comparison with unmodified electrode. Utilizing DPV method, a linear dynamic range of 1-100 μM with detection limit of 0.1 μM was obtained in phosphate buffer of pH 3.0. The electrochemical detection system was very stable, and the... 

    Electrodeposition of Pt-Ru nanoparticles on multi-walled carbon nanotubes: Application in sensitive voltammetric determination of methyldopa

    , Article Electrochimica Acta ; Volume 58, Issue 1 , 2011 , Pages 125-133 ; 00134686 (ISSN) Shahrokhian, S ; Rastgar, S ; Sharif University of Technology
    2011
    Abstract
    A modified glassy carbon electrode, prepared by potentiostatic electrodeposition of platinum-ruthenium nanoparticles (Pt-RuNPs) onto a multi-walled carbon nanotube (MWCNT) layer, offers dramatic improvements in the stability and sensitivity of voltammetric responses toward methyldopa (m-dopa) compared to glassy carbon electrodes individually coated with MWCNT or Pt-RuNPs. The surface morphology and nature of the hybrid film (Pt-RuNPs/MWCNT) deposited on glassy carbon electrodes was characterized by scanning electron microscopy (SEM), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques. A remarkable enhancement in the microscopic area of the electrode together... 

    Glassy carbon electrode modified with a bilayer of multi-walled carbon nanotube and polypyrrole doped with new coccine: Application to the sensitive electrochemical determination of Sumatriptan

    , Article Electrochimica Acta ; Volume 56, Issue 27 , November , 2011 , Pages 10032-10038 ; 00134686 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Saberi, R. S ; Sharif University of Technology
    2011
    Abstract
    A promising electrochemical sensor was developed based on a layer by layer process by electro-polymerization of pyrrole in the presence of new coccine (NC) as dopant anion on the surface of the multi-walled carbon nanotubes (MWCNTs) pre-coated glassy carbon electrode (GCE). The modified electrode was used as a new and sensitive electrochemical sensor for voltammetric determination of sumatriptan (SUM). The electrochemical behavior of SUM was investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results showed a remarkable increase (∼12 times) in the anodic peak current of SUM in comparison to the bare GCE. The effect of experimental variables such... 

    Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: Application to sensitive voltammetric determination of thioridazine

    , Article Biosensors and Bioelectronics ; Volume 24, Issue 11 , 2009 , Pages 3235-3241 ; 09565663 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Adeli, M ; Amini, M. K ; Sharif University of Technology
    2009
    Abstract
    Multi-walled carbon nanotubes (MWCNTs) were immobilised with cobalt nanoparticles and analyzed by transmission electron microscopy. This modification procedure substantially improved colloidal dispersion of the immobilised MWCNTs in water and organic solvents, yielding uniform and stable thin films for modification of the glassy carbon electrode surface. The modified electrode showed an efficient catalytic role for the electrochemical oxidation of thioridazine (TR), leading to remarkable decrease in its oxidation overpotential of approximately 100 mV and enhancement of the kinetics of the electrode reaction, which can be confirmed by increasing in the peak current and sharpness of the peak.... 

    Differential pulse voltammetric determination of N-acetylcysteine by the electrocatalytic oxidation at the surface of carbon nanotube-paste electrode modified with cobalt salophen complexes

    , Article Sensors and Actuators, B: Chemical ; Volume 133, Issue 2 , 12 August , 2008 , Pages 599-606 ; 09254005 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Bezaatpour, A ; Boghaei, D. M ; Sharif University of Technology
    2008
    Abstract
    The preparation and electrochemical performance of the carbon nanotube-paste electrode modified with salophen complexes of cobalt(III) perchlorate, with various substituents on the salophen ligand, as well as their electrocatalytic activity toward the oxidation of N-acetylcysteine (NAC) is investigated. Several Schiff base complexes containing various nucleophilic and electrophilic functional groups were prepared, and their electrochemical characteristics for the electro-oxidation of NAC were evaluated using cyclic and differential pulse voltammetry (CV and DPV). The results revealed, the modified electrodes show an efficient and selective electrocatalytic activity toward the anodic... 

    Performance analysis of an optical beam-forming network with custom microwave CAD tools

    , Article Proceedings - 2010 18th Iranian Conference on Electrical Engineering, ICEE 2010, 11 May 2010 through 13 May 2010, Isfahan ; 2010 , Pages 100-104 ; 9781424467600 (ISBN) Shabani, M ; Akbari, M ; Sharif University of Technology
    Abstract
    Next generation wideband and ultra-wideband radar antenna arrays need efficient true-time delay networks for array control. Optical beam-forming networks have been considered as a promising solution in such arrays. Performance analysis of optical beam-formers is thus quiet necessary. In this paper signal to noise ratio and dynamic range of simple optical beam-forming structures are investigated with a custom microwave CAD tool. Two structures with optical and RF power combining methods are discussed. With the proposed devices' parameters, the optical combining method shows better performance for low and moderate optical powers  

    An investigation on the performance of receiving optical beam-forming networks

    , Article Final Program and Book of Abstracts - iWAT 2010: 2010 International Workshop on Antenna Technology: Small Antennas, Innovative Structures and Materials, 1 March 2010 through 3 March 2010 ; March , 2010 ; 9781424448845 (ISBN) Shabani, M ; Akbari, M ; Sharif University of Technology
    2010
    Abstract
    Next generation wideband and ultra-wideband radar antenna arrays need efficient true-time delay networks for array control. Following the great interest for optical control of antenna array beam steering, performance analysis of optical beam-formers is a must. In this paper signal to noise ratio and dynamic range of simple optical beamforming structures with components off the shelf are investigated theoretically. Especially the effects of certain power combining components such as arrayed wave guide gratings, broadband passive optical combiners and microwave combiners inspected. It turns up that an efficient microwave combiner would surpass the optical combiners in both SNR and dynamic... 

    An enhanced dynamic range low-power delta-sigma modulator for portable voice band applications

    , Article 2003 Southwest Symposium on Mixed-Signal Design, SSMSD 2003, 23 February 2003 through 25 February 2003 ; 2003 , Pages 263-268 ; 0780377788 (ISBN); 9780780377783 (ISBN) Safarian, A. Q ; Aslanzadeh, H. A ; Mehrmanesh, S ; Vahidfar, M. B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2003
    Abstract
    A new second order sigma delta modulator with the reduced number of op-amps, to decrease static power consumption and area, is presented for voice band applications such as codecs. This switched capacitor modulator uses reused capacitor technique to reduce the input thermal noise and circuit area. It improves the DR of modulator by almost 0.5 bit. The modulator shows 87 dB DR for voice band while consuming 125 μW from a 2.5 V supply. © 2003 IEEE  

    A low-power, second-order Δ/∑ modulator using a single class-AB op-amp for voice-band applications

    , Article Analog Integrated Circuits and Signal Processing ; Volume 49, Issue 2 , 2006 , Pages 199-211 ; 09251030 (ISSN) Safarian, A ; Sahandiesfanjani, F ; Heydari, P ; Atarodi, S. M ; Sharif University of Technology
    2006
    Abstract
    The design of a power-efficient second-order Δ/∑ modulator for voice-band is presented. At system level, a new single-loop, single-stage modulator is proposed. The modulator employs only one class-AB op-amp to realize a second-order noise shaping for voice-band applications. The modulator is designed in a 0.25μm standard CMOS process, and exhibits 86 dB dynamic range (DR) for a 4 kHz voice-bandwidth. The proposed modulator consumes 125μW from a 2.5 V supply. © Springer Science + Business Media, LLC 2006  

    Design and implementation of a high dynamic range C band down-converter

    , Article Progress in Electromagnetics Research Letters ; Volume 31 , 2012 , Pages 25-33 ; 19376480 (ISSN) Saatchi, V ; Tavakoli, Z ; Sharif University ot Technology
    PIER Letters  2012
    Abstract
    A technique that expands dynamic range (DR) of frequency down-converters in the C band frequency is presented. Primary characteristics of down-converter are evaluated to confirm that it can be used in microwave receivers. The C band down-converter is carried out by the combination of RF mixers, band pass interdigital filter, and X band combline filter which are designed entirely for this project. Attainment of the perfect receiver is the final purpose of this paper, and a method that causes 72 dB dynamic range, high tangential signal sensitivity and fine gain flatness is used for achieving the mentioned purpose. These efforts improve the dynamic range about 19 dB and gain flatness about 3.07... 

    Design and fabrication of an electrochemical aptasensor using Au nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite for rapid and sensitive detection of Staphylococcus aureus

    , Article Bioelectrochemistry ; Volume 123 , 2018 , Pages 70-76 ; 15675394 (ISSN) Ranjbar, S ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Since that pathogenic bacteria are major threats to human health, this paper describes the fabrication of an effective and durable sensing platform based on gold nanoparticles/carbon nanoparticles/cellulose nanofibers nanocomposite (AuNPs/CNPs/CNFs) at the surface of glassy carbon electrode for sensitive and selective detection of Staphylococcus aureus (S. aureus). The AuNPs/CNPs/CNFs nanocomposite with the high surface area, excellent conductivity, and good biocompatibility was used for self-assembled of the thiolated specific S. aureus aptamer as a sensing element. The surface morphology of AuNPs/CNPs/CNFs nanocomposite was characterized with field emission scanning electron microscopy... 

    A wide dynamic range low power 2× time amplifier using current subtraction scheme

    , Article 2016 IEEE International Symposium on Circuits and Systems, ISCAS 2016, 22 May 2016 through 25 May 2016 ; Volume 2016-July , 2016 , Pages 462-465 ; 02714310 (ISSN); 9781479953400 (ISBN) Molaei, H ; Khorami, A ; Hajsadeghi, K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    The most challenging issue of conventional Time Amplifiers (TAs) is their limited Dynamic Range (DR). This paper presents a mathematical analysis to clarify principle of operation of conventional 2× TA's. The mathematical derivations release strength reduction of the current sources of the TA is the simplest way to increase DR. Besides, a new technique is presented to expand the Dynamic Range (DR) of conventional 2× TAs. Proposed technique employs current subtraction in place of changing strength of current sources using conventional gain compensation methods, which results in more stable gain over a wider DR. The TA is simulated using Spectre-rf in TSMC 0.18um COMS technology. DR of the 2×... 

    Continuous-time/discrete-time (CT/DT) cascaded sigma-delta modulator for high resolution and wideband applications

    , Article WMED 2010 - 8th IEEE Workshop on Microelectronics and Electron Devices, 16 April 2010 through 16 April 2010 ; April , 2010 , Pages 33-36 ; 9781424465750 (ISBN) Mesgarani, A ; Sadeghi, K. H ; Ay, S. U ; Sharif University of Technology
    2010
    Abstract
    This paper reports transistor-level design of a new continuous-time (CT), discrete-time (DT) cascaded sigma delta modulator (SDM). The combination of a CT first stage and a DT second stage was utilized to realize a high speed, high resolution analog-to-digital converter (ADC). Power consumption of CT first stage is lowered by optimizing the gain coefficients of CT integrators in a feedforward topology. Moreover double sampling (CDS) was used in second stage integrators to further reduce power consumption. Proposed new SDM is simulated in 0.18μm CMOS technology and achieves 84dB dynamic range for a 10MHz signal bandwidth. Total analog power dissipation measured was 44mW  

    A 1.8V high dynamic range CMOS Gm-c filter for portable video systems

    , Article 14th International Conference on Microelectronics, ICM 2002, 11 December 2002 through 13 December 2002 ; Volume 2002-January , 2002 , Pages 38-41 ; 0780375734 (ISBN) Mehrmanesh, S ; Aslanzadeh, H. A ; Vahidfar, M. B ; Atarodi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2002
    Abstract
    A 4th order, 5 MHz, lowpass Butterworth Gm-c filter has been combined with a low noise low-voltage amplifier to form a lowpass filter for video applications. In this filter an improved transconductor and a powerful method is used to adjust the transconductance gain for tuning application. A continuous variable gain current-to-current converter is used to tune the transconductor value. The THD of the filter is -77 dB for 1 Vppd input signal. Input referred noise is 40 nV/√Hz in the worst case. All the circuits are designed based on a 0.25 μm CMOS process technology with a single 1.8 V supply. © 2002 IEEE  

    A high dynamic range CMOS variable gain filter for ADSL

    , Article 2002 IEEE International Symposium on Circuits and Systems, Phoenix, AZ, 26 May 2002 through 29 May 2002 ; Volume 4 , 2002 , Pages IV/257-IV/260 ; 02714310 (ISSN) Mehrmanesh, S ; Atarodi, M ; IEEE ; Sharif University of Technology
    2002
    Abstract
    A 3rd order, 1.1 MHz, lowpass butterworth Gm-c filter has been combined with a low noise Variable Gain Amplifier to form the Variable Gain Filter (VGF). In this VGF an improved transconductor is used and a new method is used to adjust the transconductance gain for tuning application. A continuous variable gain current-to-current converter is used to tune the transconductor value. The THD of the VGF is -85 dB for 1 Vppd input signal and -50 dB for 3 Vppd input signal. VGF gain can be varied from 0 to 31 dB with 1 dB variation steps. Input referred noise is 20 nV/√Hz for maximum gain. All the circuits are designed based on a 0.25 μm CMOS process technology