Loading...
Search for: dynamic-recrystallization
0.007 seconds
Total 52 records

    Modelling the Geometric Dynamic Recrystallization of AlMg6 alloy using the Combination of Finite Element Method and Dislocation Based Model

    , M.Sc. Thesis Sharif University of Technology Rafiei, Morteza (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    Taking advantage of aluminum and its alloys in industry is increasing. A common method in metal forming is hot forming. In this condition a precise prediction of flow behaviour of the alloy is necessary to achieve a product of desirable mechanical and physical properties. In this situation, influence of parameters such as chemical composition, temperature, strain, strain rate as well as recovery and recrystallization phenomena should be considered and by using a suitable model, the metal behavior prediction is possible. Distribution of coherent Al3Sc dispersoids in high volume fraction accompany with Al6Mn result in strengthening to this alloy. Because of the high stacking fault energy,... 

    Hot Workability of a Free-cutting Steel with Severe Sulfur Segregation During Continuous Casting

    , M.Sc. Thesis Sharif University of Technology Naghdy, Soroosh (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Splitting in ingot cast structures and transverse cracks in continuous cast structures are the main problems of hot rolling of low carbon resulfurized free-cutting (LCRF) steels. Presence of high volume fraction of manganese sulfide inclusions in cast structure increases the risk of alligatoring in hot rolling. Because of high sulfur content of these steels and probability of formation of low melting point phases, minimum level of manganese and maximum level of copper and tin is necessary. Morphology of manganese sulfide is another important factor in hot forming of these steels, which can be controlled by level of deoxidation in steel making. In fact, MnS2 is present in fully killed... 

    Investigation of Effect of Hot rolling Parameters on Mechanical and Physical Properties of a Fe-Ni-Co Alloy

    , M.Sc. Thesis Sharif University of Technology Yazdani, Mohammad (Author) ; Karimi Taheri, Ali (Supervisor) ; abbasi, mehdi (Supervisor)
    Abstract
    Fe-29Ni-17Co alloy with commercial name “Kovar” is an alloy with low expansion coefficient. The main specification of this alloy is to maintain this property at the high temperatures that is used in sealing of glass-metal. Achieving to desirable physical properties associated with suitable mechanical properties is the purpose of related industries. However the effect of cold work and heat treatment was studied on the physical properties of this alloy, there is no report about the effect of the hot work. Thus, in this investigation, the effect of the hot work on the physical and mechanical properties of Kovar was studied. At first, slabs of Kovar alloy were cast and remelted. Then,... 

    The Effect of Warm Rolling on Severely Deformed Copper

    , M.Sc. Thesis Sharif University of Technology Nemati, Masoud (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    Since the increase in the strength of metals resulting from the severe plastic deformation (SPD) leads to a reduction in their ductility, recently, several studies have been carried out on the deformation of metals. One if the goals has been increasing the ductility while maintaining the strength. In this project, copper is undergone severe plastic deformation in a constrained groove pressing (CGP) process. According to previous studies, it has been determined that with an optimal annealing process, not only the strength is not decreased, but also it is slightly increased and also the ductility is enhanced. Thus, in order to improve the surface of copper after CGP and also optimize its... 

    An Investigation into the Kinetics of Dynamic Recrystallization of Fe-Ni Alloy

    , M.Sc. Thesis Sharif University of Technology Dehghan, Hossein (Author) ; Karimi Taheri , Ali (Supervisor) ; Abbasi, Mehdi (Supervisor)
    Abstract
    The A-286 superalloy is an iron-nickel base alloy having properties such as oxidation resistance and high mechanical strength. In addition, good producibility and high workability are the important properties of this alloy. In the present work dynamic restoration mechanism of A-286 supper alloy during thermo-mechanical processing has been studied. The aim is to verify the dominant restoration mechanism in different deformation conditions and also to determine the desire deformation parameters for hot rolling. In this regard, utilizing compression test in the range of 950 to 1100ºC and strain rate of 0.001 to 1 per second, the strain-stress curve for this alloy was obtained. After correction... 

    Theoretical and Practical Study of Deformation Behavior of AlMg6 Alloy

    , Ph.D. Dissertation Sharif University of Technology Gholamzadeh, Abolfazl (Author) ; Karimi Taheri, Ali (Supervisor)
    Abstract
    Aluminum alloys are widely used in many applications in aerospace and automotive industries. Therefore, the study of the effects of different parameters such as chemical composition, temperature, strain, strain rate and recovery and recrystallization phenomena being more effective on controlling of microstructure and final properties of product, are more important. In this research, deformation behavior of AlMg6 alloy has been studied from two theoretical and experimental views as described below: In ambient temperature deformation, the mechanical properties in correlation on the microstructures developed at different temperatures have been assessed. The results of tensile test demonstrated... 

    Comparison of the Effect of Controlled Annealing on Accumulative Roll Bonded 5083 Aluminum Alloy and AZ31 Magnesium Alloy Sheets

    , M.Sc. Thesis Sharif University of Technology Kalani, Amir Reza (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Lightweight aluminum and magnesium alloy sheets do not generally possess as much strength as steel sheets and their strength need to be increased by a suitable process such as Accumulative Roll Bonding (ARB). One of the most important limitations of ARB is the low ductility and formability of the sheets produced by this process. In the present research conducted on the 5083 aluminum and AZ31 magnesium alloy sheets efforts have beem made to overcome this limitation by heating up the sheets whether during metal forming process as hot deformation or as distinct controlled annealing process subsequent to the deformation, in order to develop the application domain of the sheets. Results... 

    A Study of Creep and Hot Deformation Behavior of an Aluminum Alloy

    , M.Sc. Thesis Sharif University of Technology Vaghefi, Ehsan (Author) ; Serajzadeh, Siamak (Supervisor)
    Abstract
    In this study, the high temperature deformation behavior of Al-Cu aluminum alloy and the results of single-stage and multi-stage creep tests have been investigated. To investigate the behavior of alloy fluidity in temperature range 150 ° C to 500 ° C and strain rate 0.0005 s-1 – 0.05 s-1 were subjected to tensile test. The results show that in the temperature range of 200 ° C to 225 ° C, the sensitivity coefficient to the strain rate is negative, which indicates the occurrence of dynamic precipitation during deformation. In the meantime, the reverse processes in the mentioned temperature range were investigated and it was found that 250 ° C was the starting temperature of the dynamic... 

    A Study on Hot Deformation and Kinetics of Softening in an Aluminum Alloy (AA5052)

    , M.Sc. Thesis Sharif University of Technology Navid Moghadam, Nasim (Author) ; Serajzadeh, Siamak (Supervisor)
    Abstract
    In this work, the deformation behavior of an Aluminium-Magnesium alloy i.e. AA5052, in different temperature ranges was studied experimentally and theoretically. For this purpose, uniaxial tensile tests were carried out in the temperature range of 25°C to 450°C and under strain rates of 0.001 "s-1" to 0.05 "s-1" . Also, the occurrence of dynamic strain aging and dynamic softening mechanisms of the alloy were taken into account. It was observed that the dynamic strain aging occurred in the temperature range of 25°C to 125°C while the corresponding activation energy was defined as 46.2 kJ/mol which is close to migration of Mg atoms in aluminum. At hot deformation region, different softening... 

    The Effect of Warm Multi -directional Forging on Microstructure and Strength of 2024 Aluminum Alloy

    , M.Sc. Thesis Sharif University of Technology Nasrollahnejad, Farzaneh (Author) ; Kazeminezhad, Mohsen (Supervisor)
    Abstract
    The 2024 aluminum alloy is deformed by two passes of multi-directional forging at room temperature, 180 oC, 250 oC, 320 oC and 380 oC with initial state of solid solution. Microstructure, mechanical properties and the state of precipitates are investigated via optical and scanning electron microscopies, hardness test, shear punch test and differential scanning calorimetry. Fragmentation and distribution of the precipitates are observed after straining at different temperatures. Dynamic precipitation of GPB zones at room temperature and 180 oC are studied by DSC analysis. The increase of both hardness and strength and the formation of shear bands are related to the presence of GPB zones.... 

    Microstructure Features and Mechanical Properties Microtubes of WE43 Magnesium Alloys for Biodegradable Vascular Stent Application

    , M.Sc. Thesis Sharif University of Technology Torabi Kafshgari, Mehran (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Magnesium and its alloys have gained much attention in medical applications, especially bio-degradable stents. However, they have not been used extensively due to their natural limitations, such as weak mechanical properties. WE43 magnesium alloy has gained attention as a bio-alloy due to its high temperature and good corrosion resistance. The present study aims to use a combination of ECAP and direct tube extrusion to fabricate thin wall tubes with good mechanical properties using WE43 magnesium alloy. In the first phase, the ECAP process at 370°C were conducted up to 4 passes on the homogenized samples to reach ultrafine grain structure. Subsequent to ECAP, direct tube extrusion at 230 °C,... 

    Effect of Warm Rolling on The Microstructure and Tensile Properties of Severely Deformed Low Carbon Steel in Grooved Die

    , M.Sc. Thesis Sharif University of Technology Ahmadi Chadegani, Amir Hoseein (Author) ; Kazeminejad, Mohsen (Supervisor)
    Abstract
    In recent years, various research has been done on the severe deformation of low carbon steel sheets. One of the methods used is the pressing in the grooved die, only two passes of the pressing process in the grooved mold have been successful when applied to these sheets, but on the other hand, these two passes also lessen the sheet's ductility while increasing its strength. Due to the fact that the sheet surface produced by the pressing in the grooved die is not entirely smooth, the attempt in this project was to improve the ductility to some extent using warm rolling in addition to the smoothness of the surface using higher temperature while improving the strength or maintain it. To... 

    Fabrication and Investigation of the Microscopic Structure and Mechanical Properties of Zx00 Magnesium Alloy by Applying the Multi-Directional Forging Process on Extruded and Homogenized Samples

    , M.Sc. Thesis Sharif University of Technology Dehghan, Ali (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Magnesium and its alloys have gained significant attention in medical applications due to their good biocompatibility. However, their widespread use has been limited by some inherent drawbacks, such as poor mechanical properties. The ZX00 magnesium alloy has been used in medical applications, including implants, due to its slow degradation rate and good ossification. However, this alloy lacks sufficient strength and ductility. The severe plastic deformation method can create an ultrafine grain structure and improve mechanical properties. In this study, to improve the mechanical properties and create an ultrafine grain structure, the multi-directional forging process was performed on... 

    Investigation of Microstructural Characteristics and Mechanical Properties of Microalloyed Magnesium X0 via Severe Plastic Deformation Process with Cyclic Closed Die Forging

    , M.Sc. Thesis Sharif University of Technology Kord Taminim, Mohammad (Author) ; Akbarzadeh, Abbas (Supervisor)
    Abstract
    Nowadays, the application of magnesium alloys as biodegradable implants in the medical industry has garnered significant attention. However, the low mechanical properties and rapid degradation rate of pure magnesium implants in the biological environment have hindered their widespread use for clinical applications. Magnesium-calcium alloys, due to their low degradation rate and promotion of faster bone healing, have become attractive choices for orthopedic applications. Nevertheless, the micro alloy X0 used in this study lacks sufficient strength and flexibility, limiting its potential applications. Utilizing severe plastic deformation methods to create ultrafine microstructures can greatly... 

    Microstructure, strengthening mechanisms and hot deformation behavior of an oxide-dispersion strengthened UFG Al6063 alloy [electronic resource]

    , Article Journal of Materials Characterization ; January 2013, Volume 75, Pages 108–114 Asgharzadeh, H ; Kim, H. S ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    An ultrafine-grained Al6063/Al2O3 (0.8 vol.%, 25 nm) nanocomposite was prepared via powder metallurgy route through reactive mechanical alloying and hot powder extrusion. Scanning electron microcopy, transmission electron microscopy, and back scattered electron diffraction analysis showed that the grain structure of the nanocomposite is trimodal and composed of nano-size grains (< 0.1 μm), ultrafine grains (0.1–1 μm), and micron-size grains (> 1 μm) with random orientations. Evaluation of the mechanical properties of the nanocomposite based on the strengthening-mechanism models revealed that the yield strength of the ultrafine-grained nanocomposite is mainly controlled by the high-angle... 

    Microstructure features, strengthening mechanisms and hot deformation behavior of oxide-dispersion Strengthened Al6063 alloy with ultrafine-grained structure [electronic resource]

    , Article AIP Conference Proceedings (American Institute of Physics, Ste. 1 NO. 1 Melville NY 11747-4502 United States) ; Volume 75, January 2013, Pages 108–114 Asgharzadeh, H ; Kim, H. S ; Simchi, A. (Abdolreza) ; Sharif University of Technology
    Abstract
    Ultrafine-grained (UFG) Al6063/Al2O3 (0.8 vol%, 25 nm) nanocomposite was prepared via powdr metallurgy route. The grain structure of the nanocomposite composed of nano-size grains (< 0.1 μm), ultrafine grains (0.1-1 μm) and micron-size grains (>1 μm) with random orientations. It was found that the yield strength of the UFG nanocomposite is mainly controlled by the Orowan mechanism rather than the grain boundaries. The deformation activation energy at temperature ranges of T <300 ˚C and 300 ˚C ≤T < 450 ˚C was determined to be 74 and 264 kJ mol-1, respectively. At the higher temperatures, significant deformation softening was observed due to dynamic recrystallization of non-equilibrium grain... 

    Hot workability of ultrafine-grained aluminum alloy produced by severe plastic deformation of Al6063 powder and consolidation [electronic resource]

    , Article Materials Science Forum ; Volume 667-669, 2011, Pages 979-984 Asgharzadeh, H. (Hamed) ; Simchi, A. (Abdolreza) ; Seop Kim, Hyoung ; Sharif University of Technology
    Abstract
    Al6063 powder was subjected to severe plastic deformation via high-energy mechanical milling to prepare ultrafine-grained (UFG) aluminium alloy. Uniaxial compression test at various temperatures between 300 and 450 °C and strain rates between 0.01 and 1 s-1 was carried out to evaluate hot workability of the material. Microstructural studies were performed by EBSD and TEM. The average activation energy and strain rate sensitivity of the hot deformation process were determined to be 280 kJ mol-1 and 0.05, respectively. The deformation temperature and applied strain rate significantly affected the grain structure of UFG Al alloy. A finer grain structure was obtained at lower temperatures and... 

    Characterization of dynamic recrystallization parameters for a low carbon resulfurized free - cutting steel

    , Article Materials and Design ; Vol. 53 , January , 2014 , pp. 910-914 ; ISSN: 02641275 Naghdy, S ; Akbarzadeh, A ; Sharif University of Technology
    Abstract
    The hot working behavior of a low carbon resulfurized free-cutting steel was studied by hot compression tests at temperature range of 1000-1200°C with strain rates of 0.001 to 1s-1. The conventional parameters such as activation energy of deformation and relationships between flow stress/strain and Zener-Hollomon parameter were determined. Both the critical stress and strain for initiation of dynamic recrystallization (DRX) were determined using: (1) strain hardening rate versus stress curve, (2) the natural logarithm of strain hardening rate versus strain curve, and (3) the constitutive equations. In summary, for low carbon resulfurized free - cutting steels, the activation energy of... 

    Experimental investigation of the hot deformation behavior of AA7075: Development and comparison of flow localization parameter and dynamic material model processing maps

    , Article International Journal of Mechanical Sciences ; Vol. 78, issue , 2014 , pp. 97-105 ; ISSN: 00207403 Jenab, A ; Karimi Taheri, A ; Sharif University of Technology
    Abstract
    The hot deformation characteristics of 7075 aluminum alloy (AA7075) are investigated by means of hot compression tests carried out in the temperature range of 200-450 C and strain rate range of 0.0003-1 s-1. Two novel processing maps based on flow localization parameter and enhanced DMM are developed and compared with conventional DMM results. It is observed that processing maps based on flow localization parameter can be used successfully to predict AA7075 thermomechanical behavior. Also, the comparison of the DMM results indicates that the new approach to calculate DMM power dissipation efficiency and instability criteria corresponds better with experimental observations. The occurrence of... 

    Hot deformation behavior of Fe-29Ni-17Co alloy

    , Article Transactions of Nonferrous Metals Society of China (English Edition) ; Volume 23, Issue 11 , 2013 , Pages 3271-3279 ; 10036326 (ISSN) Yazdani, M ; Abbasi, S. M ; Taheri, A. K ; Momeni, A ; Sharif University of Technology
    2013
    Abstract
    Hot compression tests were carried out on a Fe-29Ni-17Co alloy in the temperature range of 900 °C to 1200 °C and at strain rates of 0.001-1 s-1. Dynamic recrystallization was found responsible for flow softening during hot compression. The flow behavior was successfully analyzed by the hyperbolic sine equation and the corresponding material constants A, n and α were determined. The value of apparent activation energy was determined as 423 kJ/mol. The peak and steady state strains showed simple power-law dependence on the Zener-Hollomon parameter. The dynamic recrystallization kinetics was analyzed using Avrami equation and the corresponding exponent was determined to be about 2.7. This...