Loading...
Search for: dynamical-model
0.007 seconds
Total 276 records

    Nonlinear tracking control of a microbeam displacement by electrostatic actuation

    , Article World Academy of Science, Engineering and Technology ; Volume 79 , July , 2011 , Pages 232-236 ; ISSN: 2010376X Karami, F ; Layeghi, H ; Salarieh, H ; Alasti, A ; Sharif University of Technology
    Abstract
    In this study tracking problem of tip of a micro cantilever, actuated by electrostatic, is investigated. Dynamic model of the system is a PDE. Using electrostatic actuation.introduced significant nonlinearity in dynamic model of the system. Control goals are achieved by means of backstepping for SI and feedback linearization for MI system. Performance of control system is inspected for some assumptions and simplifications. The results are in according to numerical simulations  

    Controlling chaos in tapping mode atomic force microscopes using improved minimum entropy control

    , Article Applied Mathematical Modelling ; Vol. 37, Issue 3 , 2013 , pp. 1599-1606 ; ISSN: 0307904X Sadeghpour, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    Minimum entropy control technique, an approach for controlling chaos without using the dynamical model of the system, can be improved by being combined with a nature-based optimization technique. In this paper, an ACO-based optimization algorithm is employed to minimize the entropy function of the chaotic system. The feedback gain of a delayed feedback controller is adjusted in the ACO algorithm. The effectiveness of the idea is investigated on suppressing chaos in the tapping-mode atomic force microscope equations. Results show a good performance. The PSO-based version of the minimum entropy control technique is also used to control the chaotic behavior of the AFM, and corresponding results... 

    Modeling of tail dynamic behavior and trajectory control of a fish-robot using fuzzy logic

    , Article IEEE International Conference on Robotics and Biomimetics ; 2010 , pp. 885-890 ; ISBN: 9781424493173 Alamdar, A. R ; Dehghani, M. R ; Alasty, A ; Sharif University of Technology
    Abstract
    To have a complete model of a thunniform Fish-Robot, models of both body and tail are required. The dynamic model of the body is developed according to the parameters of a thunniform Fish-Robot built in MIT University, while, as the main part of this paper, the dynamic model of the tail is developed using fuzzy logic. Using experimental data and table look-up scheme, a fuzzy black box is introduced that gives the value of thrust force generated for any value of the Fish-Robot's input parameters: frequency of tail oscillation, amplitude of tail oscillation and speed of the Fish-Robot. In the second part, a trajectory fuzzy controller is designed for the Fish-Robot. The output of trajectory... 

    Modeling, control and simulation of a new large scale cable-driven robot

    , Article Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference 2009, DETC2009 ; Volume 7, Issue PARTS A AND B , 2009 , p. 11-16 ; ISBN: 9780791849040 Alikhani, A ; Behzadipour, S ; Ghahremani, F ; Alasty, A ; Vanini, S. A. S ; Sharif University of Technology
    Abstract
    In this paper, modeling and control of a new cable-driven robot is presented. In this mechanism, the cable arrangement eliminates the rotational motions leaving the moving platform with three translational motion. The mechanism has potentials for large scale manipulation and robotics in harsh environments. In this article kinematics and dynamics models for the proposed cable-driven architecture are derived. Additionally, Feedback linearization under input constraints is used for the control of the robot. The control algorithm ensures the cable tensions are positive while minimizing the sum of all the torques exerted by the actuators. Finally, the implementation of the proposed method is... 

    A compensated PID active queue management controller using an improved queue dynamic model

    , Article International Journal of Communication Systems ; Vol. 27, issue. 12 , 2014 , pp. 4543-4563 Kahe, G ; Jahangir, A. H ; Ebrahimi, B ; Sharif University of Technology
    Abstract
    Beside the major objective of providing congestion control, achieving predictable queuing delay, maximizing link utilization, and robustness are the main objectives of an active queue management (AQM) controller. This paper proposes an improved queue dynamic model while incorporating the packet drop probability as well. By applying the improved model, a new compensated PID AQM controller is developed for Transmission Control Protocol/Internet Protocol (TCP/IP) networks. The non-minimum phase characteristic caused by Padé approximation of the network delay restricts the direct application of control methods because of the unstable internal dynamics. In this paper, a parameter-varying dynamic... 

    A computational and analytical study into the use of counter-flow fluidic thrust vectoring nozzle for small gas turbine engines

    , Article Applied Mechanics and Materials ; Vol. 629, issue , 2014 , pp. 97-103 ; ISSN: 16609336 Banazadeh A ; Banazadeh, F ; Sharif University of Technology
    Abstract
    This paper provides an understanding of counter-flow fluidic thrust vectoring, in the presence of the secondary air vacuum, applied to the exhaust nozzle of a micro-jet engine. An analytical and numerical study is performed here on a divergent collar surface adjacent to the cylindrical exhaust duct system. The vectoring angle is controlled by manipulating the momentum flux through a vacuum gap that is located on a circle concentric to the main nozzle. Three dimensional numerical simulations are conducted by utilizing a computational fluid dynamics model with two-equation standard k-ε turbulence model to study the pressure and velocity distribution of internal flow and nozzle geometry.... 

    A fast kinematic-based control method for lower-limb power augmentation exoskeleton

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; 2014 , pp. 678-683 ; ISBN: 9781479967438 Taherifar, A ; Vossoughi, G. R ; Ghafari, A. S ; Jokar, M ; Sharif University of Technology
    Abstract
    Exoskeletons are robotic devices which are used in power augmentation and rehabilitation robotics. The exoskeleton control system is one of the most challenging issues in humanrobot interaction systems. Although the rehabilitation robotic control methods are well studied, little research has been conducted on power augmenting control methods. This paper presents a novel idea in control system of exoskeletons for load carrying and power augmentation. Here, the desired linear velocity of the exoskeleton in interaction points are taken to be proportional to interaction force at the corresponding location. The introduced control method is merely based on kinematic model and thus easy to... 

    Partial scalability to ensure reliable dynamic reconfiguration

    , Article Proceedings - IEEE 7th International Conference on Self-Adaptation and Self-Organizing Systems Workshops, SASOW 2013 ; Sept , 2014 , p. 83-88 Ghafari, M ; Heydarnoori, A ; Sharif University of Technology
    Abstract
    In order to be adapted to changes in user requirements and/or the environment, many software systems need to run continuously while they evolve. Most current approaches for such dynamic reconfiguration assume that the evolved system will behave as expected and thus will be reliable if the reconfiguration is consistent. This assumption may not correspond to reality because the delivered quality estimated previously could vary due to parameter changes at runtime. To ensure that the system acts correctly in the field after the reconfiguration, reliability of changes has to be checked at runtime. Existing approaches, however, are not applicable in highly available systems due to the possibility... 

    Aging aircraft cost analysis using system dynamics modeling

    , Article 29th Congress of the International Council of the Aeronautical Sciences, ICAS 2014 ; 7-12 September , 2014 ; ISBN: 3932182804 Fouladi, E ; Shadaab, N ; Abedian, A ; Tanara, A. K ; Sharif University of Technology
    Abstract
    Ways to reduce an airline's cost has been studied for years. In fact, in order to achieve this goal, ones need to know different types of airline's costs including; fuel and oil, maintenance, Ticketing, passenger services, etc. and their impact on the total cost of an airline. According to announcement of ICAO [1], "maintenance cost (about 11% of total cost) is the second major cost after fuel and oil". Therefore, this may attract airline owners' attention to find ways to control maintenance cost and eventually the total cost of an airline. Though, there are many systematic approaches to analyze cost reduction and making policies, in this article, SD modeling is applied to develop a... 

    Effects of the van der Waals force, squeeze-film damping, and contact bounce on the dynamics of electrostatic microcantilevers before and after pull-in

    , Article Nonlinear Dynamics ; Vol. 77, issue. 1-2 , 2014 , p. 87-98 Abtahi, M ; Vossoughi, G ; Meghdari, A ; Sharif University of Technology
    Abstract
    The operational range of microcantilever beams under electrostatic force can be extended beyond pull-in in the presence of an intermediate dielectric layer. In this paper, a systematic method for deriving dynamic equation of microcantilevers under electrostatic force is presented. This model covers the behavior of the microcantilevers before and after the pull-in including the effects of van der Waals force, squeeze-film damping, and contact bounce. First, a polynomial approximate shape function with a time-dependent variable for each configuration is defined. Using Hamilton's principle, dynamic equations of microcantilever in all configurations have been derived. Comparison between modeling... 

    Dynamics of scratch drive actuators during stepwise motion

    , Article Applied Mechanics and Materials ; Vol. 664, issue , 2014 , p. 104-110 Abtahi, M ; Vossoughi, G ; Meghdari, A ; Sharif University of Technology
    Abstract
    In this paper, a comprehensive model is used to describe dynamic behavior of SDA and its components during stepwise motion. In this model, Hamilton’s principle and Newton's method are used to extract dynamic equations of the SDA plate and dynamic equation for the linear motion of SDA. Comparison between the modeling results and available experimental data shows that this model is very effective in predicting some design objectives such as step size and output force for this type of actuators  

    Adaptive impedance control of UAVs interacting with environment using a robot manipulator

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; Oct , 2014 , p. 636-641 Sayyaadi, H ; Sharifi, M ; Sharif University of Technology
    Abstract
    In this paper, a nonlinear adaptive impedance controller is proposed for UAVs equipped with a robot manipulator that interacts with environment. In this adaptive controller, by considering the nonlinear dynamics model of the UAV plus the robot manipulator in Cartesian coordinates, all of model parameters are considered to be completely uncertain and their estimation is updated using an adaptation law. The objective of the proposed adaptive controller is the control of manipulator's end-effector impedance in Cartesian coordinates to have a stable physical interaction. The adjustable Cartesian impedance is a desired dynamical relationship between the end-effector motion in Cartesian... 

    Utility of a nonlinear joint dynamical framework to model a pair of coupled cardiovascular signals

    , Article IEEE Journal of Biomedical and Health Informatics ; Volume 17, Issue 4 , 2013 , Pages 881-890 ; 21682194 (ISSN) Sayadi, O ; Shamsollahi, M. B ; Sharif University of Technology
    2013
    Abstract
    We have recently proposed a correlated model to provide a Gaussian mixture representation of the cardiovascular signals, with promising results in identifying rhythm disturbances. The approach provides a transformation of the data into a set of integrable Gaussians distributed over time. Looking into the model from a new joint modeling perspective, it is capable of assembling a filtered estimation, and can be used to derive temporal information of the waveforms. In this paper, we present a step-by-step derivation of the joint model putting correlation assumptions together to conclude a minimal joint description for a pair of ECG-ABP signals. We then probe novel applications of this model,... 

    Frequency response analysis for dynamic model identification and control of a ducted fan aerial vehicle in hover

    , Article Applied Mechanics and Materials, Neptun-Olimp ; Volume 332 , 2013 , Pages 56-61 ; 16609336 (ISSN) ; 9783037857335 (ISBN) Effati, M ; Banazadeh, A ; Sharif University of Technology
    2013
    Abstract
    System Identification is a key technology for the development and integration of modern engineering systems including unconventional flying vehicles. These systems are highly parametric with complex dynamics and nonlinearities. Ducted fans are special class of these vehicles that can take off vertically, hover and cruise at very low speed. In this paper, an exact equivalent linear system is found from the non-linear dynamic model of a ducted fan by use of frequency response identification. Here, power spectral density analysis is performed, using CIFER software, to evaluate the input-output responses in hover and to derive the transfer functions based on the coherence criterion. Then,... 

    PID controller design for micro gas turbines using experimental frequency-response data and a linear identification technique

    , Article International Journal of Advanced Mechatronic Systems ; Volume 5, Issue 6 , 2013 , Pages 353-364 ; 17568412 (ISSN) Banazadeh, A ; Gol, H. A ; Ramazani, H ; Sharif University of Technology
    E-flow Inderscience  2013
    Abstract
    This paper discusses the identification process of engine dynamics and presents derived transfer function models including; thrust, shaft speed, compressor exit pressure and turbine exit temperature in relation to the fuel flow. Model identification approach, presented in this paper, is the first to consider frequency-sweep signals to excite dynamics, as well as to utilise windowing and smoothing techniques to reduce random errors in the spectral estimates. Here, frequency sweep provides a fairly uniform spectral excitation and chirp-z transform warrants the exact determination of the frequency responses that are robust to the uncertainties. The identified models are also validated with the... 

    ECG denoising using angular velocity as a state and an observation in an Extended Kalman Filter framework

    , Article Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ; 2012 , Pages 2897-2900 ; 1557170X (ISSN) ; 9781424441198 (ISBN) Akhbari, M ; Shamsollahi, M. B ; Jutten, C ; Coppa, B ; Sharif University of Technology
    2012
    Abstract
    In this paper an efficient filtering procedure based on Extended Kalman Filter (EKF) has been proposed. The method is based on a modified nonlinear dynamic model, previously introduced for the generation of synthetic ECG signals. The proposed method considers the angular velocity of ECG signal, as one of the states of an EKF. We have considered two cases for observation equations, in one case we have assumed a corresponding observation to angular velocity state and in the other case, we have not assumed any observations for it. Quantitative evaluation of the proposed algorithm on the MIT-BIH Normal Sinus Rhythm Database (NSRDB) shows that an average SNR improvement of 8 dB is achieved for an... 

    Use of PSO in parameter estimation of robot dynamics; part one: No need for parameterization

    , Article 2012 16th International Conference on System Theory, Control and Computing, ICSTCC 2012 - Joint Conference Proceedings ; 2012 ; 9786068348483 (ISBN) Jahandideh, H ; Namvar, M ; Sharif University of Technology
    2012
    Abstract
    Offline procedures for estimating parameters of robot dynamics are practically based on the parameterized inverse dynamic model. In this paper, we present a novel approach to parameter estimation of robot dynamics which removes the necessity of parameterization (i.e. finding the minimum number of parameters from which the dynamics can be calculated through a linear model with respect to these parameters). This offline approach is based on a simple and powerful swarm intelligence tool: the particle swarm optimization (PSO). In this paper, we discuss and validate the method through simulated experiments. In "Part Two" we analyze our method in terms of robustness and compare it to robust... 

    Dynamic modeling and simulation of brushless doubly fed induction machine in consideration of core loss

    , Article IECON Proceedings (Industrial Electronics Conference) ; 2012 , Pages 1753-1757 ; 9781467324212 (ISBN) Hashemnia, M. N ; Tahami, F ; The Institute of Electrical and Electronics Engineers (IEEE); IEEE Industrial Electronics Society (IES) ; Sharif University of Technology
    2012
    Abstract
    Brushless doubly fed induction machine has recently attracted attention in variable speed generators and motor drives. In order to have a high performance control, a precise dynamic model is required. This paper aims at introducing a model of brushless doubly fed induction machine taking core loss into account. The details of model derivation are outlined and the torque relation is expressed in the general reference frame. The model is then used for simulation of the dynamic performance of the machine. The error introduced by neglecting core loss effect is also shown  

    3D human action recognition using Gaussian processes dynamical models

    , Article 2012 6th International Symposium on Telecommunications, IST 2012 ; 2012 , Pages 1179-1183 ; 9781467320733 (ISBN) Jamalifar, H ; Ghadakchi, V ; Kasaei, S ; Sharif University of Technology
    2012
    Abstract
    An efficient method to automatically recognize basic human actions is proposed to improve the communication between a human and a computer. Human actions are considered as patterns generated by complex non-linear dynamical models. A non-linear dynamical model is used to represent human actions. Gaussian process dynamical models are used to capture the spatial and temporal behaviors of actions. To make the process more efficient a 7-dimensional feature is extracted for each action. Although the extracted feature vector is compact compared to a high-dimensional temporal pattern, it can efficiently discriminate among different actions. The tests run on CMU MoCap database with SVM show promising... 

    Coupled bending and torsion effects on the squeezed film air damping in torsional micromirrors

    , Article Proceedings of the ASME Design Engineering Technical Conference, 12 August 2012 through 12 August 2012 ; Volume 5 , August , 2012 , Pages 49-55 ; 9780791845042 (ISBN) Moeenfard, H ; Kaji, F ; Ahmadi, M. T ; Sharif University of Technology
    2012
    Abstract
    The current paper presents an analytical model for the problem of squeezed film damping in micromirrors considering the bending of the supporting torsion microbeams. At the first the nonlinear Reynolds equation governing the behavior of the squeezed gas underneath the mirror is linearized. The resulting linearized equation is then nondimensionalized and analytically solved for two cases of the infinitesimal and finite tiling angle of the mirror. The obtained pressure distribution from the solution of the Reynolds equation is then utilized for finding the squeezed film damping force and torque applied to the mirror. The results show that in the case of the infinitesimal tilting angle, the...