Loading...
Search for: elastic-models
0.007 seconds

    Application of perturbation theory to elastic models of DNA

    , Article Proceedings of the 13th Regional Conference on Mathematical Physics, Antalya, Turkey ; October , 2013 , Pages 241-253 ; 9789814417525 (ISBN) Eslami-Mossallam, B ; Ejtehadi, M. R ; Sharif University of Technology
    2013
    Abstract
    In this paper, we demonstrate the applicability of the perturbation methods to different elastic models of DNA molecule. Two different kinds of perturbation methods are presented to find a first approximation for the force-extension characteristic of DNA in the anisotropic wormlike chain model, and the persistence length of DNA in the asymmetric elastic rod model. In both cases we show that it is meaningful to use the perturbation theory, and a first-order calculation is enough to find the result with an acceptable accuracy  

    Extreme bendability of DNA double helix due to bending asymmetry

    , Article Journal of Chemical Physics ; Volume 143, Issue 10 , 2015 ; 00219606 (ISSN) Salari, H ; Eslami Mossallam, B ; Naderi, S ; Ejtehadi, M. R ; Sharif University of Technology
    American Institute of Physics Inc  2015
    Abstract
    Experimental data of the DNA cyclization (J-factor) at short length scales exceed the theoretical expectation based on the wormlike chain (WLC) model by several orders of magnitude. Here, we propose that asymmetric bending rigidity of the double helix in the groove direction can be responsible for extreme bendability of DNA at short length scales and it also facilitates DNA loop formation at these lengths. To account for the bending asymmetry, we consider the asymmetric elastic rod (AER) model which has been introduced and parametrized in an earlier study [B. Eslami-Mossallam and M. R. Ejtehadi, Phys. Rev. E 80, 011919 (2009)]. Exploiting a coarse grained representation of the DNA molecule... 

    Computational modeling of the transverse-isotropic elastic properties of single-walled carbon nanotubes

    , Article Computational Materials Science ; Volume 49, Issue 3 , 2010 , Pages 544-551 ; 09270256 (ISSN) Montazeri, A ; Sadeghi, M ; Naghdabadi, R ; Rafii-Tabar, H ; Sharif University of Technology
    2010
    Abstract
    Various experimental and theoretical investigations have been carried out to determine the elastic properties of nanotubes in the axial direction. Their behavior in transverse directions, however, has not been well studied. In this paper, a combination of molecular dynamics (MD) and continuum-based elasticity model is used to predict the transverse-isotropic elastic properties of single-walled carbon nanotubes (SWCNTs). From this modeling study, five independent elastic constants of an SWCNT in transverse directions are obtained by analyzing its deformations under four different loading conditions, namely, axial tension, torsion, uniform and non-uniform radial pressure. To find the elastic... 

    A physically-based three dimensional fracture network modeling technique

    , Article Scientia Iranica ; Volume 19, Issue 3 , 2012 , Pages 594-604 ; 10263098 (ISSN) Masihi, M ; Sobhani, M ; Al Ajmi, A. M ; Al Wahaibi, Y. M ; Khamis Al Wahaibi, T ; Sharif University of Technology
    Abstract
    In poorly developed fractured rocks, the contribution of individual fracture on rock conductivity should be considered. However, due to the lack of data, a deterministic approach cannot be used. The conventional way to model discrete fractures is to use a Poisson process, with prescribed distribution, for fracture size and orientation. Recently, a stochastic approach, based on the idea that the elastic energy due to fractures follows a Boltzmann distribution, has been used to generate realizations of correlated fractures in two dimensions. The elastic energy function has been derived by applying the appropriate physical laws in an elastic medium. The resulting energy function has been used... 

    Stress analysis of internal carotid artery with low stenosis level: the effect of material model and plaque geometry

    , Article Journal of Mechanics in Medicine and Biology ; Volume 17, Issue 6 , 2017 ; 02195194 (ISSN) Shahidian, A ; Ghorbannia Hassankiadeh, A ; Sharif University of Technology
    Abstract
    Stress concentration in carotid stenosis has been proven to assist plaque morphology in disease diagnosis and vulnerability. This work focuses on numerical analysis of stress and strain distribution in the cross-section of internal carotid artery using a 2D structure-only method. The influence of four different idealized plaque geometries (circle, ellipse, oval and wedge) is investigated. Numerical simulations are implemented utilizing linear elastic model along with four hyperelastic constitutive laws named neo-Hookean, Ogden, Yeoh and Mooney-Rivlin. Each case is compared to the real geometry. Results show significant strength of oval and wedged geometries in predicting stress and strain... 

    A modified method for predicting the stresses around producing boreholes in an isotropic in-situ stress field

    , Article International Journal of Rock Mechanics and Mining Sciences ; Volume 96 , 2017 , Pages 85-93 ; 13651609 (ISSN) Hassani, A. H ; Veyskarami, M ; Al Ajmi, A. M ; Masihi, M ; Sharif University of Technology
    Abstract
    Rock formations are always under in situ stresses due to overburden or tectonic stresses. Drilling a well will lead to stress redistribution around the well. Understanding such a stress redistribution, and adopting a proper failure criterion, play a vital role in predicting any potential wellbore failure. However, most of the published analytical models are based on assumptions that do not satisfy the boundary conditions during production, that is, when the well pressure is less than the pore pressure. This paper is aimed at the modeling of the stress regime around the wellbore through combining the poroelastic model with proper boundary conditions under different flow regimes. As a result,... 

    Modeling magneto-mechanical behavior of Fe3O4 nanoparticle/polyamide nanocomposite membrane in an external magnetic field

    , Article Journal of Composite Materials ; Volume 52, Issue 11 , 2018 , Pages 1505-1517 ; 00219983 (ISSN) Tayefeh, A ; Wiesner, M ; Mousavi, A ; Poursalehi, R ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    The magnetic response of a polyamide nanocomposite membrane under applying a magnetic field has been modeled to evaluate elastic deformation order of magnitude. A PA-Fe3O4 nanocomposite membrane is considered to be modeled under influence of volume plane stress caused by a magnetic field. The modeling of the mechanical behavior of Fe3O4-PA nanocomposite membrane suggests that nanoparticle displacements within the nanocomposite, in the order of 200 nm under applying an external magnetic field, are greater than free volumes or porosities of the polyamide membrane. The membrane can be excited to mechanically vibrate by applying an alternating magnetic field lower than 0.1 T. As the results... 

    Stretching an anisotropic DNA

    , Article Journal of Chemical Physics ; Volume 128, Issue 12 , 2008 ; 00219606 (ISSN) Eslami Mossallam, B ; Ejtehadi, M. R ; Sharif University of Technology
    2008
    Abstract
    We present a perturbation theory to find the response of an anisotropic DNA to the external tension. It is shown that the anisotropy has a nonzero but small contribution to the force-extension curve of the DNA. Thus an anisotropic DNA behaves like an isotropic one with an effective bending constant equal to the harmonic average of its soft and hard bending constants. © 2008 American Institute of Physics  

    Modified Green–Lindsay analysis of an electro-magneto elastic functionally graded medium with temperature dependency of materials

    , Article Mechanics of Time-Dependent Materials ; 2021 ; 13852000 (ISSN) Mirparizi, M ; Razavinasab, S. M ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    This article presents a modified Green–Lindsay (MG-L) thermoelasticity model considering temperature and strain rate. Previously, this model has been developed based on the Green–Lindsay theory of thermoelasticity using strain and temperature rate dependent thermoelastic equations. This study analyzes stress and thermal wave propagation of a functionally graded medium exposed to an electromagnetic field and a thermal shock. All magnetic, elastic, and thermal features of the medium are considered to vary in the longitudinal direction. Additionally, the properties of the material are dependent on the temperature in the form of a cubic function. Using the large displacement formulation and the... 

    Modified Green–Lindsay analysis of an electro-magneto elastic functionally graded medium with temperature dependency of materials

    , Article Mechanics of Time-Dependent Materials ; Volume 26, Issue 4 , 2022 , Pages 871-890 ; 13852000 (ISSN) Mirparizi, M ; Razavinasab, S. M ; Sharif University of Technology
    Institute for Ionics  2022
    Abstract
    This article presents a modified Green–Lindsay (MG-L) thermoelasticity model considering temperature and strain rate. Previously, this model has been developed based on the Green–Lindsay theory of thermoelasticity using strain and temperature rate dependent thermoelastic equations. This study analyzes stress and thermal wave propagation of a functionally graded medium exposed to an electromagnetic field and a thermal shock. All magnetic, elastic, and thermal features of the medium are considered to vary in the longitudinal direction. Additionally, the properties of the material are dependent on the temperature in the form of a cubic function. Using the large displacement formulation and the... 

    Multi-scale dispersive gradient elasticity model with rotation for the particulate composite

    , Article Composite Structures ; Volume 294 , 2022 ; 02638223 (ISSN) Nouri, A ; Toufigh, V ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Research on the characteristics of composites material has received enormous interest in recent years. The multi-scale nature of composite material leads to employing advanced techniques. Moreover, the presence of a wave with the high-frequency source adds complexity to the analysis. In this paper, a novel multi-scale elasticity model was developed to predict the wave dispersion property of particulate composites. The methodology was based on the simultaneous participation of translational and rotational degrees of freedom in motion equations. The method scheme of gaining motion equations was accomplished by using Taylor's expansion as a continualization method. The framework of the motion...