Loading...
Search for: electric-batteries
0.01 seconds
Total 39 records

    Developing a Framework for Reliability Studies of Distribution Energy System Comprised of Multi Energy Hubs with Heat Storages

    , M.Sc. Thesis Sharif University of Technology Qasemi, Milad (Author) ; Moeini Aghtaie, Moein (Supervisor)
    Abstract
    Using energy storage systems has been remarkably improved the energy systems efficiency and reliability indicators of the system and also reduced the operating costs of these systems. Thus using them in an energy system would count as an advantage. Lately, the procedure of implementation of these systems has been studied widely and various motives behind implementing them have been reviewed. For example, the effect of cost optimization in electrical vehicles on reliability indicators from the load management perspective can be addressed. Therefore this thesis has studied the effect of electrical and thermal storage systems on the reliability indicators of an energy hub and the effect of... 

    Synthesis and elucidation of electrochemical characteristics of nanorods, microsized and nanosized CuO as cathode materials for Zn/CuO alkaline battery

    , Article Journal of Solid State Electrochemistry ; Volume 19, Issue 7 , April , 2015 , Pages 2155-2165 ; 14328488 (ISSN) Zeraatkish, Y ; Jafarian, M ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Discharge characteristics of nanorods (NRs), microsized and nanosized copper (II) oxide (CuO) particles prepared via thermal decomposition and thermal oxidation routes are examined as cathode materials of a Zn/CuO cell without membrane separators. The electrochemical discharge is examined galvanostatically at a current density of 500 mAg−1 and reveals that the first discharge cycles of all the CuO materials contain one potential plateau; subsequent discharge cycles involve three potential plateaus. Each potential plateau is due to an electrochemical reaction. The first, second, and third potential plateaus are attributed to Cu2O3, CuO, and Cu2O discharges,... 

    A probabilistic modeling of photo voltaic modules and wind power generation impact on distribution networks

    , Article IEEE Systems Journal ; Volume 6, Issue 2 , 2012 , Pages 254-259 ; 19328184 (ISSN) Soroudi, A ; Aien, M ; Ehsan, M ; Sharif University of Technology
    2012
    Abstract
    The rapid growth in use of renewable intermittent energy resources, like wind turbines (WTs) and solar panels, in distribution networks has increased the need for having an accurate and efficient method of handling the uncertainties associated with these technologies. In this paper, the unsymmetrical two point estimate method (US2PEM) is used to handle the uncertainties of renewable energy resources. The uncertainty of intermittent generation of WT, photo voltaic cells, and also electric loads, as input variables, are taken into account. The variation of active losses and imported power from the main grid are defined as output variables. The US2PEM is compared to symmetrical two point... 

    Explicit degradation modelling in optimal lead-acid battery use for photovoltaic systems

    , Article IET Generation, Transmission and Distribution ; Volume 10, Issue 4 , 2016 , Pages 1098-1106 ; 17518687 (ISSN) Sina Hamedi, A ; Rajabi Ghahnavieh, A ; Sharif University of Technology
    Institution of Engineering and Technology  2016
    Abstract
    Lead-acid battery is a storage technology that is widely used in photovoltaic (PV) systems. Battery charging and discharging profiles have a direct impact on the battery degradation and battery loss of life. This study presents a new 2-model iterative approach for explicit modelling of battery degradation in the optimal operation of PV systems. The proposed approach consists of two models: namely, economic model and degradation model which are solved iteratively to reach the optimal solution. The economic model is a linear programming optimisation problem that calculates the optimal hourly battery use profile based on an assumed value of the battery degradation cost. The degradation model,... 

    Capacity-outage joint analysis and optimal power allocation for wireless body area networks

    , Article IEEE Systems Journal ; 2018 ; 19328184 (ISSN) Razavi, A ; Jahed, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Wireless body area networks (WBANs) are characterized by short-range wireless communication between inherently resource-limited sensors that operate in the vicinity of the human body for recording certain physiological signals. One of the main limitations of WBANs is in terms of their available power. Since the nodes are typically battery-driven, an efficient power transmission is essential to guarantee long-lasting communications among nodes without the need for frequent battery replacement or charging. In this study, aiming to improve the WBAN performance, we first investigate the power allocation problem by choosing the ergodic capacity and the outage probability as the desired metrics.... 

    Economic assessment of hydrogen fueling station, a case study for Iran

    , Article Renewable Energy ; Volume 33, Issue 12 , 2008 , Pages 2525-2531 ; 09601481 (ISSN) Qadrdan, M ; Shayegan, J ; Sharif University of Technology
    2008
    Abstract
    In recent years there have been many efforts to develop a hydrogen energy system in Iran. For instance, the Iranian fuel cell steering committee conducted a project and determined some targets to implement hydrogen in different sectors, especially transportation. In this paper, the costs of building stations and the levelized cost of hydrogen for two types of stations, SMR and electrolysis, with various sizes and capacity factors have been investigated. Also, in the case of electrolysis, hydrogen cost sensitivity to the price of electricity has been examined. According to the cost analysis conducted here, it is understandable that hydrogen costs ($/kg) vary considerably based on station... 

    Hydrodynamic and electrochemical modeling of vanadium redox flow battery

    , Article Mechanics and Industry ; Volume 16, Issue 2 , 2015 ; 22577777 (ISSN) Ozgoli, H. A ; Elyasi, S ; Mollazadeh, M ; Sharif University of Technology
    EDP Sciences  2015
    Abstract
    Two and three dimensional modeling of a single cell of vanadium redox flow battery has been done thoroughly according to electrochemical and fluid mechanic equations in this study. The modeling has been done in stationary state and its results have been presented in three chemical, electrical and mechanical sub models. The parametric analysis on some of important factors in cell operation demonstrated that increase in electrode and membrane conductivity and electrode porosity contributes to electric potential increase in cells. Also operational temperature increase leads to decrease in cells' voltage. Better fluid distribution on the electrode surface area results in better cell operation,... 

    A transient model of vanadium redox flow battery

    , Article Mechanics and Industry ; Volume 17, Issue 4 , 2016 ; 22577777 (ISSN) Ozgoli, H. A ; Elyasi, S ; Sharif University of Technology
    EDP Sciences  2016
    Abstract
    It has been attempted to gain a new viewpoint in transient cell modeling of vanadium redox flow battery. This has been achieved by considering electrochemical relations along with conceptual electrical circuit of this kind of battery. The redox flow battery is one of the best rechargeable batteries because of its capability to average loads and output power sources. A model of transient behavior is presented in this paper. The transient features are considered as the most remarkable characteristics of the battery. The chemical reactions, fluid flow, and electrical circuit of the structure govern the dynamics. The transient behavior of the redox flow battery based on chemical reactions is... 

    Joint Data Routing and Power Scheduling for Wireless Powered Communication Networks

    , Article 2019 IEEE International Conference on Communications, ICC 2019, 20 May 2019 through 24 May 2019 ; Volume 2019-May , 2019 ; 15503607 (ISSN) ; 9781538680889 (ISBN) Movahednasab, M ; Omidvar, N ; Pakravan, M. R ; Svensson, T ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In a wireless powered communication network, an energy access point (EAP) supplies the energy needs of the network nodes through radio frequency wave transmission, and the nodes store the received energy in their batteries for their future data transmission. In this paper, we propose an online stochastic policy that jointly controls energy transmission from the EAP to the nodes and data transfer among the nodes. Our proposed policy is designed using a quadratic Lyapunov function to capture the limitations on the energy consumption of the nodes imposed by their battery level. The proposed policy is adaptive to different channel statistics of the network. We provide theoretical analysis for... 

    An energy-efficient controller for wirelessly-powered communication networks

    , Article IEEE Transactions on Communications ; Volume 68, Issue 8 , August , 2020 , Pages 4986-5002 Movahednasab, M ; Makki, B ; Omidvar, N ; Pakravan, M. R ; Svensson, T ; Zorzi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In a wirelessly-powered communication network (WPCN), an energy access point (E-AP) supplies the energy needs of the network nodes through radio frequency wave transmission, and the nodes store their received energy in their batteries for possible data transmission. In this paper, we propose an online control policy for energy transfer from the E-AP to the wireless nodes and for data transfer among the nodes. With our proposed control policy, all data queues of the nodes are stable, while the average energy consumption of the network is shown to be within a bounded gap of the minimum energy required for stabilizing the network. Our proposed policy is designed using a quadratic Lyapunov... 

    A novel ZVT/ZCT PWM converter used for solar battery chargers with reduced conduction loss

    , Article 2015 IEEE Energy Conversion Congress and Exposition, ECCE 2015, 20 September 2015 through 24 September 2015 ; 2015 , Pages 5357-5362 ; 9781467371506 (ISBN) Mousavian, H ; Bakhshai, A ; Jain, P ; Zolghadri, M. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    In this paper a novel structure of a zero- voltage transition PWM boost converter is proposed. The main switch and diode of the converter are turned on and off under zero voltage transition. In addition the auxiliary switch and both diodes operate in ZCT condition. The auxiliary circuit consists of a transformer, a snubber capacitor and two diodes. Without imposing much current stress, the switching loss reduces significantly. So a higher efficiency converter is achieved. The simple structure and a wide range of operating current are the advantages of the proposed converter, which make it useful for solar battery chargers etc. The operation principles of the proposed converter are explained... 

    An integrated human stress detection sensor using supervised algorithms

    , Article IEEE Sensors Journal ; Volume 22, Issue 8 , 2022 , Pages 8216-8223 ; 1530437X (ISSN) Mohammadi, A ; Fakharzadeh, M ; Baraeinejad, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper adopts a holistic approach to stress detection issues in software and hardware phases and aims to develop and evaluate a specific low-power and low-cost sensor using physiological signals. First, a stress detection model is presented using a public data set, where four types of signals, temperature, respiration, electrocardiogram (ECG), and electrodermal activity (EDA), are processed to extract 65 features. Using Kruskal-Wallis analysis, it is shown that 43 out of 65 features demonstrate a significant difference between stress and relaxed states. K nearest neighbor (KNN) algorithm is implemented to distinguish these states, which yields a classification accuracy of 96.0 ± 2.4%. It... 

    Design and construction of a charge controller for stand-alone PV/battery hybrid system by using a new control strategy and power management

    , Article Solar Energy ; Volume 149 , 2017 , Pages 132-144 ; 0038092X (ISSN) Mirzaei, A ; Forooghi, M ; Ghadimi, A. A ; Abolmasoumi, A. H ; Riahi, M. R ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    In this paper, a new control strategy and power management for a stand-alone PV/battery hybrid power system has been suggested. The solar cell arrays provide energy in the steady-state and the battery provides energy in transient states. Here, a charge controller system based on the MPP tracking technology, suitable for using in the islanded micro grid that contains a solar panel and a battery is designed. The charge controller includes a unidirectional DC-DC converter as an interface circuit between the solar panel and the DC bus, a bidirectional DC-DC converter as an interface circuit between the battery and the DC bus with a control system and power management in different states of... 

    Practical battery size optimization of a PV system by considering individual customer damage function

    , Article Renewable and Sustainable Energy Reviews ; Volume 67 , 2017 , Pages 36-50 ; 13640321 (ISSN) Mehrabankhomartash, M ; Rayati, M ; Sheikhi, A ; Ranjbar, A. M ; Sharif University of Technology
    Abstract
    Today, energy crises attracted many researchers’ attention to renewable energy technologies especially photovoltaic (PV) systems. The main challenge of PV systems is unpredictable nature of solar power generation. To overcome this challenge, a storage system is integrated which reduces demand reliance on electricity grid and uses excess energy that solar panels produce. As investment cost of the storage system is considerable, finding an optimal technology, size, and configuration are crucial. In this paper, the optimal battery system is excluded from existing PV plant installing in a commercial building located in Mashhad/Iran. Here, the sizing procedure is based on a financial evaluation... 

    Data-driven joint TEP-BESS co-planning scheme to relieve transmission lines congestion: A min-max regret method

    , Article Sustainable Energy Technologies and Assessments ; Volume 53 , 2022 ; 22131388 (ISSN) Mazaheri, H ; Moeini Aghtaie, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Transmission lines congestion has recently been a vital challenge in power systems operation due to the intermittent outputs of renewable energy sources (RES). Therefore, an efficient transmission congestion management (TCM) method should be defined to deal with the congestion issue. This paper aims to propose a simultaneous linearized two-stage TEP-BESS co-planning optimization model to relieve transmission lines congestion. In doing so, a novel TCM structure is suggested in a pool-based deregulated data-driven optimal power flows (D-OPF) by the computationally effective min-max regret method to consider future scenarios of generating units and demanded loads. To improve the efficiency of... 

    Design and electromagnetic analysis of a superconducting rotating machine

    , Article 2008 Australasian Universities Power Engineering Conference, AUPEC 2008, Sydney, NSW, 14 December 2008 through 17 December 2008 ; 2008 ; 9781424441624 (ISBN) Mardiha, M ; Vakilian, M ; Fardmanesh, M ; Sharif University of Technology
    2008
    Abstract
    A superconducting synchronous motor with an inductor containing bulk high temperature superconductor and BiSrCaCuo wires has been studied in this paper. The principle of operation is based on the interaction between the two spatial variable magnetic fields in the motor air gap. One of the two aforementioned magnetic fields is produced by the superconducting inductor based on magnetic shielding of high temperature superconductors. A procedure is developed to calculate the magnetic field produced by the inductor in the environment of the commercial finite element code ANSYS. The HTS motor is designed to develop 100 hp (the rated power). © 2008 Australasian Universities Power Engineering... 

    Using a diversity scheme to reduce energy consumption in wireless sensor networks

    , Article 2nd International Conference on Broadband Networks, BROADNETS 2005, Boston, MA, 3 October 2005 through 7 October 2005 ; Volume 2005 , 2005 , Pages 17-20 Mansouri, V. S ; Ghiassi Farrokhfal, Y ; Mohammadnia Avval, M ; Hossein Khalaj, B ; Sharif University of Technology
    2005
    Abstract
    In this paper, a new method is proposed utilizing a diversity scheme to reduce power consumption in large scale sensor networks. Sensor networks are composed of large number of battery powered nodes. Energy consumption is the most important design objective in sensor networks while delay and throughput are taken less into account. Wireless transmission is the other important characteristic of these networks. Small-scale fading decreases wireless communication performance. In a fading channel higher SNRs is needed and consequently more energy is consumed in fading channels. Another important characteristic of sensor networks is the necessity of fault tolerant protocols. Node-to-node links are... 

    Operation scheduling of battery storage systems in Joint energy and ancillary services markets

    , Article IEEE Transactions on Sustainable Energy ; Volume 8, Issue 4 , 2017 , Pages 1726-1735 ; 19493029 (ISSN) Kazemi, M ; Zareipour, H ; Amjady, N ; Rosehart, W. D ; Ehsan, M ; Sharif University of Technology
    Abstract
    This paper presents a risk-based approach for evaluating the participation strategy of a battery storage system in multiple markets. Simultaneous offering in day-ahead energy, spinning reserve, and regulation markets is considered in this paper. The uncertainties considered include predicted market prices as well as energy deployment in spinning reserve and regulation markets. A new nonprobabilistic model is introduced in this paper to handle the uncertain nature of spinning reserve and regulation markets. Robust optimization is implemented to model these uncertain parameters and manage their related risk. The proposed risk-based model is a max-min problem, which is converted to its... 

    Method for load sharing and power management in a hybrid PV/battery source islanded microgrid

    , Article 7th Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2016, 16 February 2016 through 18 February 2016 ; 2016 , Pages 652-657 ; 9781509003754 (ISBN) Karimi, Y ; Oraee, H ; Guerrero, J. M ; Vasquez, J. C ; Savaghebi, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    This paper presents a decentralized load sharing and power management method for an islanded microgrid composed of PV units, battery units and hybrid PV/battery units. The proposed method performs all the necessary tasks such as load sharing among the units, battery charging and discharging and PV power curtailment with no need to any communication among the units. The proposed method is validated experimentally  

    Decentralized method for load sharing and power management in a hybrid single/three-phase-islanded microgrid consisting of hybrid source PV/battery units

    , Article IEEE Transactions on Power Electronics ; Volume 32, Issue 8 , 2017 , Pages 6135-6144 ; 08858993 (ISSN) Karimi, Y ; Oraee, H ; Guerrero, J. M ; Sharif University of Technology
    Abstract
    This paper proposes a new decentralized power management and load sharing method for a photovoltaic (PV)-based, hybrid single/three-phase-islanded microgrid consisting of various PV units, battery units, and hybrid PV/battery units. The proposed method is not limited to the systems with separate PV and battery units, and power flow among different phases is performed automatically through three-phase units. The proposed method takes into account the available PV power and battery conditions of the units to share the load among them. To cover all possible conditions of the microgrid, the operation of each unit is divided into five states in single-phase units and seven states in three-phase...