Loading...
Search for: electrical-double-layers
0.012 seconds
Total 37 records

    The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Farhadi, H ; Ayatollahi, S ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Dynamic behavior of fluid-fluid interactions can potentially affect the performance of any enhanced oil recovery (EOR) process including low salinity water flooding. In this work, dynamic interfacial tension (IFT) of crude-oil/brine system is measured in a wide range of salinity of sea water (SW), from 50-time diluted sea water (SW50D) to 2-time concentrated sea water (SW2C). Contrary to the most of published IFT trends in the literature, for the system under investigation here, as the brine salinity increases the crude-oil/brine IFT reduces, which cannot be explained using the existing theories. The lack of a physical model to explain the observed phenomena was the motivation to develop a... 

    Experimental investigation on synergic effect of salinity and pH during low salinity water injection into carbonate oil reservoirs

    , Article Journal of Petroleum Science and Engineering ; Volume 202 , 2021 ; 09204105 (ISSN) Mehraban, M. F ; Ayatollahi, S ; Sharifi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Interaction between rock-fluid and fluid-fluid can have a significant effect on oil recovery. Changing the wettability of reservoir rock toward more water-wet or less oil-wet state is one of the expected mechanisms during low salinity water injection (LSWI). pH and salinity are of the most eminent factors of injection water controlling the wettability state of a crude oil/brine/rock system during any waterflooding operation. A small change in pH can affect the surface charges at the rock/water and oil/water interfaces leading to wettability alteration in a porous medium. In this study, the synergic effect of salinity and pH on the wettability state of carbonate rocks is evaluated through... 

    Facile deposition of porous fluorine doped tin oxide by Dr. blade method for capacitive applications

    , Article Ceramics International ; Volume 47, Issue 4 , 2021 , Pages 5487-5494 ; 02728842 (ISSN) Asadzadeh, M ; Tajabadi, F ; Dastan, D ; Sangpour, P ; Shi, Z ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Three-dimensional macroporous fluorine-doped tin oxide (p-FTO) films were successfully deposited using commercial ink of FTO powder and SnCl2 salt via Dr. Blade method. Various features of p-FTO thin films were studied as a function of the ink composition and sintering temperature. The morphological studies corroborated formation of porous, uniform, and crack-free FTO films after annealing at 300 °C for 10 min in air. X-ray diffraction pattern demonstrated development of highly crystalline FTO films. The lowest sheet resistance of 47 Ω/□ was obtained for the p-FTO film with a thickness of 21 μm. The capacitance of thin p-FTO films was investigated using a three-electrode system and the... 

    Facile deposition of porous fluorine doped tin oxide by Dr. Blade method for capacitive applications

    , Article Ceramics International ; 2020 Asadzadeh, M ; Tajabadi, F ; Dastan, D ; Sangpour, P ; Shi, Z ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Three-dimensional macroporous fluorine-doped tin oxide (p-FTO) films were successfully deposited using commercial ink of FTO powder and SnCl2 salt via Dr. Blade method. Various features of p-FTO thin films were studied as a function of the ink composition and sintering temperature. The morphological studies corroborated formation of porous, uniform, and crack-free FTO films after annealing at 300 °C for 10 min in air. X-ray diffraction pattern demonstrated development of highly crystalline FTO films. The lowest sheet resistance of 47 Ω/□ was obtained for the p-FTO film with a thickness of 21 μm. The capacitance of thin p-FTO films was investigated using a three-electrode system and the... 

    How do ions contribute to brine-hydrophobic hydrocarbon Interfaces? An in silico study

    , Article Journal of colloid and interface science ; Volume 575 , 2020 , Pages 337-346 Badizad, M. H ; Koleini, M. M ; Hartkamp, R ; Ayatollahi, S ; Ghazanfari, M. H ; Sharif University of Technology
    NLM (Medline)  2020
    Abstract
    HYPOTHESIS: The saltwater-oil interface is of broad implication in geochemistry and petroleum disciplines. To date, the main focus has been on the surface contribution of polar, heavy compounds of crude oil, widely neglecting the role of non-polar hydrocarbons. However, non-polar compounds are expected to contribute to characteristics of oil-brine interfaces. METHODOLOGY: Utilizing molecular dynamics simulation, we aim to characterize ion behavior adjacent to hydrophobic organic phases. Concerning natural environments, NaCl, CaCl2 and Na2SO4 electrolytes at low (5 wt%) and high (15 wt%) concentrations were brought in contact with heptane and/or toluene which account for aliphatic and... 

    The impact of salinity on the interfacial structuring of an aromatic acid at the calcite/brine interface: an atomistic view on low salinity effect

    , Article Journal of Physical Chemistry B ; Volume 124, Issue 1 , December , 2020 , Pages 224-233 Koleini, M. M ; Badizad, M. H ; Hartkamp, R ; Ayatollahi, S ; Ghazanfari, M. H ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    This study aims to elucidate the impact of salinity on the interactions governing the adsorption of polar aromatic oil compounds onto calcite. To this end, molecular dynamics simulations were employed to assess adsorption of a model polar organic molecule (deprotonated benzoic acid, benzoate) on the calcite surface in NaCl brines of different concentration levels, namely, deionized water (DW), low-salinity water (LS, 5000 ppm), and sea water (SW; 45,000 ppm). Calcite was found to be completely covered by several well-ordered water layers. The top hydration layer is very compact and prevents direct adsorption of benzoates onto the substrate. Instead, Na+ ions form a distinct positively... 

    An atomistic insight into the implications of ion-tuned water injection in wetting preferences of carbonate reservoirs

    , Article Journal of Molecular Liquids ; Volume 293 , 2019 ; 01677322 (ISSN) Koleini, M.M ; Badizad, M. H ; Ghatee, M. H ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The efficiency of water flooding methods is known to improve by applying ion-tuned water injection. Although there is a consensus that such improvement happens through reversing reservoir wettability characteristics to more water-wet state, the true impact of ions is still ambiguous among contradictory debates. The well-known molecular dynamics (MD) simulation techniques would shed light on such ambiguities to gain deep atomic-scale understanding of the process. Results from MD simulations show that the presence of Na+ and Cl¯ ions leads to the formation of an electrical double layer in adjacency of calcite surface while Mg2+ ions dominantly make complexes with hydrocarbons throughout the... 

    An atomistic insight into interfacial properties of brine nanofilm confined between calcite substrate and hydrocarbon layer

    , Article Applied Surface Science ; Volume 490 , 2019 , Pages 89-101 ; 01694332 (ISSN) Koleini, M. M ; Badizad, M. H ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Molecular dynamics simulation was applied in this study to scrutinize the interfacial properties of water nano-film confined between calcite mineral and hydrocarbon layer, as two intrinsically different media. Such system resembles the environment experienced by water molecules in the pore spaces of underground carbonate reservoirs. The interplay between water film and confining phases, oil and mineral, strongly influences hydrocarbon production process; however, there is a lack of detailed understanding of the involved interactions. MD simulations indicate development of several layers with different water densities in the confined brine. Water molecules form well-ordered structure in three... 

    Interactions between Rock/Brine and Oil/Brine interfaces within thin brine film wetting carbonates: A molecular dynamics simulation study

    , Article Energy and Fuels ; Volume 33, Issue 9 , 2019 , Pages 7983-7992 ; 08870624 (ISSN) Koleini, M. M ; Badizad, M. H ; Kargozarfard, Z ; Ayatollahi, S ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    The thin brine film that wets rock surfaces governs the wettability of underground reservoirs. The ionic composition and salinity of this nanosized brine film influence the wetting preference of the rock pore space occupied by hydrocarbons. Despite numerous investigations over the last decades, a unanimous fundamental understanding that concerns the contribution of ions in the original wetting state of the reservoir is lacking and hence the mechanisms responsible for the wettability reversal of the mineral are still unclear. This wettability reversal is the main consequence of ion-Tuned waterflooding. Although the method is widely accepted in practice, there is no universal consensus on the... 

    Shedding light on pseudocapacitive active edges of single-layer graphene nanoribbons as high-capacitance supercapacitors

    , Article ACS Applied Energy Materials ; Volume 2, Issue 5 , 2019 , Pages 3665-3675 ; 25740962 (ISSN) Qorbani, M ; Esfandiar, A ; Mehdipour, H ; Chaigneau, M ; Irajizad, A ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    In the field of energy storage by high-rate supercapacitors, there has been an upper limit for the total interfacial capacitance of carbon-based materials. This upper limit originates from both quantum and electric double-layer capacitances. Surpassing this limit has been the focus of intense research in this field. Here, we precisely investigate the effect of chemical functional groups and physical confinement on the electrochemical performance of graphene nanoribbons. We present the results of a quasi-one-dimensional single-layer graphene nanoribbon (120 nm in width and -100 μm in length) microelectrode fabricated by mechanical exfoliation of graphite, followed by electron beam lithography... 

    Size and geometry of multielectrode arrays determine the efficiency of electrical interaction with neurons through double-layer capacitance

    , Article IEEE Sensors Journal ; Volume 19, Issue 8 , 2019 , Pages 2829-2836 ; 1530437X (ISSN) Vafaiee, M ; Mohammadpour, R ; Vossoughi, M ; Sasanpour, P ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Multielectrode array (MEA) structures are the vital parts in the interface between neural structures and external electronic circuits, both in excitation and detection. As a transducer, the performance of electrodes has direct effect on the quality of the recorded neural signal, as well as induced charge density during the stimulation in neural prosthesis. The size and geometry of the electrode structure have distinct effect on the performance of electrodes accordingly. In this paper, the effect of size and geometry of the electrodes has been investigated in their performance and the impedimetric features of the fabricated electrodes with different structures have been studied. Based on the... 

    Polyphosphate-reduced graphene oxide on Ni foam as a binder free electrode for fabrication of high performance supercapacitor

    , Article Electrochimica Acta ; Volume 296 , 2019 , Pages 130-141 ; 00134686 (ISSN) Talebi, M ; Asen, P ; Shahrokhian, S ; Ahadian, M. M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Polyphosphate reduced graphene oxide on Ni foam (PPO-RGO/NF) is synthesized by varying weight ratios of Na5P3O10 (PO): graphene oxide (GO) with a simple, scalable and low cost method through freeze-drying of the PO-GO/NF followed by thermal treatment of the prepared electrodes. The resulting samples are characterized using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), Brunauer-Emmett-Teller (BET), and raman spectroscopy methods. The results show that the weight ratio of PO:GO, considerably affect the... 

    Effects of low salinity water on calcite/brine interface: a molecular dynamics simulation study

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 537 , January , 2018 , Pages 61-68 ; 09277757 (ISSN) Koleini, M. M ; Fattahi Mehraban, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Calcite is among the most abundant minerals organizing the oil reservoir formation and therefore its surface properties play a central role in the increase of the oil recovery efficiency. The effect of low-salinity water in carbonate rocks reveals that brine composition and salinity can improve the oil recovery in carbonates through wettability alteration. However, the specific mechanism for wettability changes that leads to improved oil recovery in calcite is not well understood. To obtain deeper insights at atomic level into the understanding the characteristics of the calcite-water interface, we performed classical molecular dynamics simulations in the presence of different ions in brine... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 4 , 2018 , Pages 983-996 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    Smartwater flooding in a carbonate asphaltenic fractured oil reservoir - Comprehensive fluidfluid-rock mechanistic study

    , Article 19th European Symposium on Improved Oil Recovery: Sustainable IOR in a Low Oil Price World, IOR NORWAY 2017, 24 April 2017 through 27 April 2017 ; 2017 ; 9789462822092 (ISBN) Mehraban, M. F ; Afzali, S ; Ahmadi, Z ; Mokhtari, R ; Ayatollahi, S ; Sharifi, M ; Kazemi, A ; Nasiri, M ; Fathollahi, S ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2017
    Abstract
    Waterflooding has been regarded as an efficient method for pressure maintenance of oil reservoirs. x Improved techniques such as Smart Water flooding as a new EOR/IOR process has gained more momentum based on the recent research activities in this field and the reduction of oil price. Despite many efforts on achieving the governing mechanisms of Smart Water flooding in many individual fields, most of data are sparse and more possible mechanisms which explains all the interactions yet to be introduced. This experimental study used a systematic laboratory framework which is based on seawater treatments at fixed ionic strength to eliminate the ionic strength effects, NaCl considered as the... 

    Wettability alteration and oil recovery by spontaneous imbibition of low salinity brine into carbonates: Impact of Mg2+, SO4 2− and cationic surfactant

    , Article Journal of Petroleum Science and Engineering ; Volume 147 , 2016 , Pages 560-569 ; 09204105 (ISSN) Karimi, M ; Al-Maamari, R. S ; Ayatollahi, S ; Mehranbod, N ; Sharif University of Technology
    Elsevier B.V  2016
    Abstract
    A large amount of the discovered oil reserves are reserved in carbonate formations, which are mostly naturally fractured oil-wet. Wettability alteration towards more water-wet state reduces the capillary barrier, hence improving the oil recovery efficiency in such reservoirs. In this study, wettability alteration towards favorable wetting state was investigated by combining modified low salinity brine with surfactant during water flooding. The diluted brine was modified by increasing the concentration of Mg2+ and SO4 2−, individually as well as both ions in combination. Different brine formulations were tested experimentally through the observations of contact angle measurements and... 

    A depthwise averaging solution for cross-stream diffusion in a Y-micromixer by considering thick electrical double layers and nonlinear rheology

    , Article Microfluidics and Nanofluidics ; Volume 19, Issue 6 , 2015 , Pages 1297-1308 ; 16134982 (ISSN) Ahmadian Yazdi, A ; Sadeghi, A ; Saidi, M. H ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Both nonlinear rheology and finite EDL thickness effects on the mixing process in an electroosmotically actuated Y-sensor are being investigated in this paper, utilizing a depthwise averaging method based on the Taylor dispersion theory. The fluid rheological behavior is assumed to obey the power-law viscosity model. Analytical solutions are obtained assuming a large channel width to depth ratio for which a 1-D profile can efficiently describe the velocity distribution. Full numerical simulations are also performed to determine the applicability range of the analytical model, revealing that it is able to provide accurate results for channel aspect ratios of ten and higher and quite... 

    Investigation of salts behavior at liquid–liquid interfaces

    , Article Springer Proceedings in Mathematics and Statistics, 26 August 2013 through 30 August 2013 ; Volume 117 , July , 2015 , Pages 265-270 ; 21941009 (ISSN) ; 9783319123066 (ISBN); 9783319123066 (ISBN) Khiabani, N. P ; Bahramian, A ; Soltani, M ; Pourafshary, P ; Sarikhani, K ; Chen, P ; Ejtehadi, M. R ; Makarov R. N ; Melnik R. V. N ; Kotsireas I. S ; Shodiev H ; Cojocaru M. G ; Cojocaru M. G ; Makarov R. N ; Melnik R. V. N ; Kotsireas I. S ; Shodiev H ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    We have used molecular dynamics simulation to investigate hydrophilic– hydrophobic interfaces between calcium chloride (CaCl2) aqueous solutions and normal hexane. The results demonstrate the increasing impact of salt concentration on the liquid–liquid interfacial tension, hence, negative adsorption of CaCl2 according to Gibbs adsorption isotherm. Moreover, we calculated the density profiles of hexane, water, and the counter ions. The results reveal an electrical double layer near the interface and the less affinity of calcium cations toward the interface than that of chloride anions. Orientation of water molecules at the studied concentrations may result in developing a positively charged... 

    Shear-rate-dependent rheology effects on mass transport and surface reactions in biomicrofluidic devices

    , Article AIChE Journal ; Volume 61, Issue 6 , 2015 , Pages 1912-1924 ; 00011541 (ISSN) Sadeghi, A ; Amini, Y ; Saidi, M. H ; Yavari, H ; Sharif University of Technology
    John Wiley and Sons Inc  2015
    Abstract
    Consideration is given to shear-rate-dependent rheology effects on mass transport in a heterogeneous microreactor of rectangular cross section, utilizing both numerical and analytical approaches. The carrier liquid obeys the power-law viscosity model and is actuated primarily by an electrokinetic pumping mechanism. It is discovered that, considering the shear-thinning biofluids to be Newtonian fluids gives rise to an overestimation of the saturation time. The degree of overestimation is higher in the presence of large Damkohler numbers and electric double layer thicknesses. It is also increased by the application of a favorable pressure gradient, whereas the opposite is true when an opposed... 

    Mixed pressure and AC electroosmotically driven flow with asymmetric wall zeta potential and hydrophobic surfaces

    , Article ASME 2013 Heat Transfer Summer Conf. Collocated with the ASME 2013 7th Int. Conf. on Energy Sustainability and the ASME 2013 11th Int. Conf. on Fuel Cell Science, Engineering and Technology, HT 2013 ; Volume 1 , 2013 ; 9780791855478 (ISBN) Lesani, M ; Sharif University of Technology
    2013
    Abstract
    The present study examines Alternating Current (AC) electroosmotic flows in a parallel plate microchannel subject to constant wall temperature. Numerical method consists of a central finite difference scheme for spatial terms and a forward difference scheme for the temporal term. Asymmetric boundary conditions are assumed for Poison-Boltzmann equation for determining the electric double layer (EDL) potential distribution. The potential distribution is then used to evaluate the velocity distribution. The velocity distribution is obtained by applying slip boundary conditions on the walls which accounts for probable hydrophobicity of surfaces. After determining the velocity distribution...