Loading...
Search for: electrochemical-sensors
0.006 seconds
Total 33 records

    Fabrication of Hybrid Graphene/Metal Electrodes for Biosensor Applications

    , M.Sc. Thesis Sharif University of Technology Mohammadzadeh, Amirmahdi (Author) ; Simchi, Abdolreza (Supervisor)
    Abstract
    Electrochemical sensing of glucose has received paramount attention in recent years, particularly, the non-enzymatic glucose sensing is one of the trends in the whole biosensing world. In this research, synthesis and evaluation of a hybrid structure of vertical oriented nickel nanorod-reduced graphene oxide sheets as a non-enzymatic glucose sensor were performed. The 3D array of nickel nanorods was synthesized by electrodeposition of nickel sulfate electrolyte in track-etched polycarbonate template with 100 nm pore size and 6-10 μm thickness. The electrodeposition performed in various conditions, and the best result was achieved by application of potential of 3 V for 60 minutes. The shiny... 

    Synthesis of Hybrid Graphene Nanostructures and Their Application in Design and Fabrication of Electrochemical Sensors for Pharmaceutical and Biological Applications

    , Ph.D. Dissertation Sharif University of Technology Asadian, Elham (Author) ; Shahrokhian, Saeed (Supervisor) ; Iraji Zad, Azam (Supervisor) ; Mohajerzadeh, Shamsoddin ($item.subfieldsMap.e)
    Abstract
    Recent years have witnessed an increasing interest in graphene and graphene-based materials due to their extraordinary electrical properties, large specific surface area, fascinating mechanical properties, good chemical stability and remarkable electrochemical activity. The combination of these properties make graphene an attractive candidate for a wide range of applications including energy conversion and storage devices (batteries and supercapacitors), electronic devices (transistors and memory devices) and solar cells. On the other hand, graphene has a potential application in constructing different kind of sensors such as biosensors and electrochemical sensors due to its planar... 

    Gold, Palladium and Gold-Palladium Nanoparticles Electrodes Electrodeposited on Indium Tin Oxide and Titanium Oxide for Direct Determination and Reduction of Hexavalent Chromium

    , Ph.D. Dissertation Sharif University of Technology Siavash Moakhar, Roozbeh (Author) ; Dolati, Abolghasem (Supervisor) ; Ghorbani, Mohammad (Supervisor)
    Abstract
    Hexavalent chromium ions (Cr(VI)) is one of the most dangerous heavy ions for the environment, humans and other living organisms. Hence, finding new ways to determine and reduction to the much less toxic trivalent chromium (Cr(III)) is highly important. In this thesis, electrochemical and photoelectrochemical methods have been employed for the direct detection and reduction of Cr (VI). For this purpose, the indium tin oxide (ITO) electrode decorated with gold-palladium bimetallic nanoparticles (AuPd) was used for the determination and reduction of Cr(VI) via electrochemical route. These AuPd decorated electrodes exhibited a wide linear concentration range of 0.001-100 µM, a very low... 

    Development of Miniaturized Electrochemical Sensors Based on Ion-Selective Membrane for Environmental Applications

    , Ph.D. Dissertation Sharif University of Technology Dehabadi, Monireh (Author) ; Yaghmaei, Soheila (Supervisor) ; Legin, Andrey (Supervisor) ; Kirsanov, Dmitry (Supervisor) ; Babain, Vasiliy (Supervisor)
    Abstract
    The first study of the present research aims to the possibility of developing simple, accurate and selective potentiometric sensors for the detection of scandium ions in aqueous solution, which is done for the first time. In this study, a sensor array consisting of 17 miniaturized potentiometric sensors based on polymeric membranes containing various ion-extracting ligands were designed and fabricated. Ligands as the active component of the membranes included phosphine oxides and diamides of various organic acids, which were used in the extraction of rare earth metal ions. The possibility of using these extractants in the polymer matrix of membranes for the development of scandium-sensitive... 

    Biosensor for Fast Detection (Based on Thyroid Hormones)

    , M.Sc. Thesis Sharif University of Technology Moradi, Farshid (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    Thyroid gland is one of the important internal organs of the body that is responsible for T3 and T4 hormones secretion. Concentration of these hormones directly influences growth of body, thus measurement concentration of thyroid hormones is one of the most common experiments all of the world, specially in our country that Hypothyroidism is common among people. Secretion of hormones in thyroid gland controlled by TSH (thyroid Stimulating Hormone) that released from Pituitary gland. TSH concentration is opposite of level of thyroid secretion. Because of interconnected relationship between these three hormones, measurement of each of them is so important. Many researches for developing... 

    Design of Low Frequency High Resolution Integrated Bioimpedance Meter

    , M.Sc. Thesis Sharif University of Technology Kaveh, Mohammad (Author) ; Atarodi, Mojtaba (Supervisor) ; Mehrany, Khashayar (Supervisor)
    Abstract
    This thesis activities, consists of three main parts. The first part is, manufacturing and optimization of the electrical part of blood glucose measurement devices, based on electrochemical sensors. In this part, design of blood glucose measurement systems based on two and three electrode electrochemical sensors are proceeded and the accuracy of the electrical block, is increased up to 1mg/dl according to sensor current range. The second part, is related to the design of different probes for blood electrical characteristics (impedance magnitude) measurements, at low frequencies. Measurements with these probes show, first the blood impedance magnitude range at low frequencies and moreover,... 

    Preparation and Investigation of the Electrochemical of the Glassy Carbon Electrode Modified by Nanocellulose/Carbon Nanoparticle: Application to Pharmaceutical Determinations

    , M.Sc. Thesis Sharif University of Technology Balotf, Hamed (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the first part, a novel electrochemical sensor for clonazepam (CLNP) was fabricated based on immobilizing cellulose nanofibers /carbon nanoparticles (CNFs/CNPs) nanocomposite on glassy carbon electrode (CNFs/CNPs/GCE). The combination of CNFs and CNPs produced a novel kind of structurally uniform and electro-analytically active nanocomposite. The surface morphology of CNFs/CNPs layer deposited onto glassy carbon electrode was characterized by scanning electron microscopy. The results of the voltammetric investigations showed a considerable enhancement in the cathodic peak current of CLNP (up to 60 times) on the surface of CNFs/CNPs/GCE relative to the bare GCE. Under the optimal... 

    Preparation and Investigation of Electrochemical Sensors for Determination of Pharmaceutical and Biological Compunds Based on Glassy Carbon Electrode Modified with Polypyrrole/Carbon Nanotube Composite

    , M.Sc. Thesis Sharif University of Technology Azimzadeh Sani, Mahnaz (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    In the recent years, conductive polymers are widely used in the design and construction of chemical and biological sensors.The polypyrrole due to features such as good thermal and chemical stability, ease of synthesis and better conductivity than other conductive polymers, atracts much attention. In order to modification of electrode surface,adhesiveand thin polymer films can be electropolymerized in the presence of organic or inorganic dopants on the surface of metal or carbon surfaces in aqueous or organic solutions. On the other hand carbon nanotubes by owing unique properties such as chemical stability and high electrical conductivity are good choice for electrod surface modification.... 

    Voltammetric Determination of Tryptophan and 5-Hydroxytryptophan Using Graphite Electrode Modified with a Thin Film of Graphite/Diamond Nano-mixture And Determination of omeprazole Using Graphite Electrode

    , M.Sc. Thesis Sharif University of Technology Bayat, Maryam (Author) ; Shahrokhian, Saeed (Supervisor)
    Abstract
    At the first part of this thesis, a pyrolitic graphite electrode (PGE) modified with graphite/nanodiamond film (GND) was applied as a sensitive electrochemical sensor for determination and study of electrochemical behavior of tryptophan (Trp) and 5-hydroxytryptophan (5-HTP) in aqueous solutions. The results showed that GND caused a remarkable increase in the peak currents so the GND/PGE electrode surface was more sensitive to the concentration of Trp and 5-HTP than the PGE surface. The determination of Trp and 5-HTP were investigated by stripping voltammetry. Experimental parameters such as scan rate, pH, accumulation conditions and amount of the modifier used on the PGE surface were... 

    Nano composite coating based on cellulose nanofibers/carbon nanoparticles: application to voltammetric determination of clonazepam

    , Article Journal of Solid State Electrochemistry ; Vol. 19, issue. 1 , 2014 , p. 251-260 Shahrokhian, S ; Balotf, H ; Ghalkhani, M ; Sharif University of Technology
    Abstract
    A novel electrochemical sensor for clonazepam (CLNP) was fabricated based on immobilizing cellulose nanofibers/carbon nanoparticles (CNFs/CNPs) nanocomposite on glassy carbon electrode (CNFs/CNPs/GCE). The combination of CNFs and CNPs produced a novel kind of structurally uniform and electro-analytically active nanocomposite. The surface morphology of CNFs/CNPs layer deposited onto glassy carbon electrode was characterized by scanning electron microscopy. The results of the voltammetric investigations showed a considerable enhancement in the cathodic peak current of CLNP (up to 60 times) on the surface of CNFs/CNPs/GCE relative to the bare GCE. Under the optimal conditions, the modified... 

    Tantalum electrodes modified with well-aligned carbon nanotube-au nanoparticles: application to the highly sensitive electrochemical determination of cefazolin

    , Article Applied Biochemistry and Biotechnology ; Volume 173, Issue 6 , July 2014 , Pages 1511-1528 Fayazfar, H ; Afshar, A ; Dolati, A ; Sharif University of Technology
    Abstract
    Carbon nanotube/nanoparticle hybrid materials have been proven to exhibit high electrocatalytic activity suggesting broad potential applications in the field of electroanalysis. For the first time, modification of Ta electrode with aligned multi-walled carbon nanotubes/Au nanoparticles introduced for the sensitive determination of the antibiotic drug, cefazolin (CFZ). The electrochemical response characteristics of the modified electrode toward CFZ were investigated by means of cyclic and linear sweep voltammetry. The modified electrode showed an efficient catalytic activity for the reduction of CFZ, leading to a remarkable decrease in reduction overpotential and a significant increase of... 

    Glassy carbon electrode modified with a bilayer of multi-walled carbon nanotube and polypyrrole doped with new coccine: Application to the sensitive electrochemical determination of Sumatriptan

    , Article Electrochimica Acta ; Volume 56, Issue 27 , November , 2011 , Pages 10032-10038 ; 00134686 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Saberi, R. S ; Sharif University of Technology
    2011
    Abstract
    A promising electrochemical sensor was developed based on a layer by layer process by electro-polymerization of pyrrole in the presence of new coccine (NC) as dopant anion on the surface of the multi-walled carbon nanotubes (MWCNTs) pre-coated glassy carbon electrode (GCE). The modified electrode was used as a new and sensitive electrochemical sensor for voltammetric determination of sumatriptan (SUM). The electrochemical behavior of SUM was investigated on the surface of the modified electrode using linear sweep voltammetry (LSV). The results showed a remarkable increase (∼12 times) in the anodic peak current of SUM in comparison to the bare GCE. The effect of experimental variables such... 

    Electrochemical preparation of a molecularly imprinted polypyrrole modified pencil graphite electrode for the determination of phenothiazine in model and real biological samples

    , Article Talanta ; Volume 144 , November , 2015 , Pages 456-465 ; 00399140 (ISSN) Nezhadali, A ; Rouki, Z ; Nezhadali, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Abstract A sensitive electrochemical sensor for determination of phenothiazine (PTZ) was introduced based on molecularly imprinted polymer (MIP) film. A computational study was performed to evaluate the template-monomer geometry and interaction energy in the prepolymerization mixture. The electrode was prepared during electropolymerization of pyrrole (Py) on a pencil graphite electrode (PGE) by cyclic voltammetry (CV) technique. The quantitative measurements were performed using differential pulse voltammetry (DPV) in Britton-Robinson (BR) buffer solutions using 60% (v/v) acetonitrile-water (ACN/H2O) binary solvent. The effect of important parameters like pH, monomer... 

    A kinetic study on the electrodeposition of nickel nanostructure and its electrocatalytic activity for hydrogen evolution reaction

    , Article Journal of Applied Electrochemistry ; Volume 40, Issue 11 , November , 2010 , Pages 1941-1947 ; 0021891X (ISSN) Torabi, M ; Dolati, A ; Sharif University of Technology
    2010
    Abstract
    The electrodeposition of nickel was studied using electrochemical techniques in different electrolytes and various agents. The voltammetry analysis clearly showed that the electrodeposition of nickel was a diffusion-controlled process associated with a typical nucleation process. The current transients represented instantaneous nucleation with a typical three-dimensional (3D) growth mechanism. Scharifker's equations were derived for instantaneous and progressive nucleation of the 3D growth of the spherical centers under diffusion-controlled condition. The number of nucleation sites increased with the increment in overpotential and Ni 2+ concentration. Atomic force microscopy was used to... 

    A preliminary study of the electro-catalytic reduction of oxygen on Cu-Pd alloys in alkaline solution

    , Article Journal of Electroanalytical Chemistry ; Volume 647, Issue 1 , 2010 , Pages 66-73 ; 15726657 (ISSN) Gobal, F ; Arab, R ; Sharif University of Technology
    2010
    Abstract
    Copper-palladium alloys of different compositions are electrodeposited on nickel from aqueous solutions. These alloys are characterized by scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX). The catalytic activity of these alloys toward oxygen reduction reaction (ORR) in alkaline solution is investigated using rotating disk electrode (RDE). The number of electrons transferred per O2 molecule (n) obtained at different potentials is close to 2 at low overpotential indicating HO2- formation and gradually increases to 4 at higher overpotentials indicating full reduction to OH-. It is shown that Cu-Pd alloys are better electrocatalysts than Pd with Pd-Cu-1 having 24.5%... 

    Encapsulation of palladium nanoparticles by multiwall carbon nanotubes-graft-poly(citric acid) hybrid materials

    , Article Journal of Applied Polymer Science ; Volume 116, Issue 4 , 2010 , Pages 2188-2196 ; 00218995 (ISSN) Adeli, M ; Mehdipour, E ; Bavadi, M ; Sharif University of Technology
    2010
    Abstract
    Citric acid was polymerized onto the surface of functionalized multiwall carbon nanotubes (MWCNTCOOH) and MWCNT-graft-poly(citric acid) (MWCNTg-PCA) hybrid materials were obtained. Due to the grafted poly(citric acid) branches, MWCNT-g-PCA hybrid materials not only were soluble in water but also were able to trap water soluble metal ions. Reduction of trapped metal ions in the polymeric shell of MWCNT-g-PCA hybrid materials by reducing agents such as sodium borohydride led to encapsulated metal nanoparticles on the surface of MWCNT. Herein palladium nanoparticles were encapsulated and transported by MWCNT-g-PCA hybrid materials (MWCNT-g-PCA-EPN) and their application as nanocatalyst toward... 

    Selective voltammetric determination of d-penicillamine in the presence of tryptophan at a modified carbon paste electrode incorporating TiO2 nanoparticles and quinizarine

    , Article Journal of Electroanalytical Chemistry ; Volume 644, Issue 1 , Jan , 2010 , Pages 1-6 ; 15726657 (ISSN) Mazloum Ardakani, M ; Beitollahi, H ; Taleat, Z ; Naeimi, H ; Taghavinia, N ; Sharif University of Technology
    2010
    Abstract
    A carbon paste electrode (CPE) chemically modified with TiO2 nanoparticles and quinizarine (QZ) was used as a selective electrochemical sensor for the simultaneous determination of minor amounts of d-penicillamine (D-PA) and tryptophan (Trp). This modified electrode showed very efficient electrocatalytic activity for anodic oxidation of both d-PA and Trp. Substantial decreases of anodic overpotentials for both compounds made this analysis possible. Results of square wave voltammetry (SWV) using this modified electrode showed two well-resolved anodic waves for the oxidation of d-PA and Trp, which makes the simultaneous determination of both compounds possible. The peak potential for the... 

    Novel nanostructure electrochemical sensor for electrocatalytic determination of norepinephrine in the presence of high concentrations of acetaminophene and folic acid

    , Article Applied Catalysis A: General ; Volume 378, Issue 2 , 2010 , Pages 195-201 ; 0926860X (ISSN) Mazloum Ardakani, M ; Beitollahi, H ; Sheikh Mohseni, M. A ; Naeimi, H ; Taghavinia, N ; Sharif University of Technology
    2010
    Abstract
    In the present paper, the use of a carbon paste electrode modified by 2,2′-[1,2 buthanediylbis (nitriloethylidyne)]-bis-hydroquinone (BH) and TiO2 nanoparticles prepared by a simple and rapid method was described. The modified electrode showed an excellent character for electrocatalytic oxidization of norepinephrine (NE), acetaminophene (AC) and folic acid (FA). Using differential pulse voltammetry (DPV), a highly selective and simultaneous determination of NE, AC and FA has been explored at the modified electrode. Differential pulse voltammetry (DPV) peak currents of NE, AC and FA increased linearly with their concentration at the ranges of 4.0-1100.0 μM, 12.5-500.0 μM and 200.0-3200.0 μM,... 

    Electrochemical determination of naltrexone on the surface of glassy carbon electrode modified with Nafion-doped carbon nanoparticles: Application to determinations in pharmaceutical and clinical preparations

    , Article Journal of Electroanalytical Chemistry ; Volume 638, Issue 2 , 2010 , Pages 212-217 ; 15726657 (ISSN) Ghorbani Bidkorbeh, F ; Shahrokhian, S ; Mohammadi, A ; Dinarvand, R ; Sharif University of Technology
    Abstract
    A new sensitive and selective electrochemical sensor was developed for determination of naltrexone (NAL) in pharmaceutical dosage form and human plasma. Naltrexone is an opioid antagonist which is commonly used for the treatment of narcotic addiction and alcohol dependence. A voltammetric study of naltrexone has been carried out at the surface of glassy carbon electrode (GCE) modified with Nafion-doped carbon nanoparticles (CNPs). The electrochemical oxidation of naltrexone was investigated by cyclic and differential pulse voltammetric techniques. The dependence of peak currents and potentials on pH, concentration and the potential scan rate was investigated. The electrode characterization... 

    Development of a nanocellulose composite based voltammetric sensor for vitamin B9 analysis

    , Article Current Nanoscience ; Volume 12, Issue 4 , 2016 , Pages 493-499 ; 15734137 (ISSN) Ghalkhani, M ; Shahrokhian, S ; Sharif University of Technology
    Bentham Science Publishers B.V 
    Abstract
    As a B group vitamins, vitamin B9 is a Water-soluble vitamin which is produced by plants and microorganisms (bacteria and yeasts). Vitamin B9 plays an important role in the production of proteins and nucleic acids in body and also is one of the substances that prevents the development of neural tube defects in the fetus. Methods: Electrochemical behavior of vitamin B9 was studied using a potentiostat/galvanostat SAMA 500, electroanalyzer system, I. R. Iran. A three-electrode system was used, including a glassy carbon working electrode (d = 2.0 mm, purchased from Azar Electrode Co., Urmia, I.R. Iran), an Ag/AgCl (saturated KCl) reference electrode and a Pt wire auxiliary electrode....