Loading...
Search for: electrodes
0.016 seconds
Total 624 records

    Facile synthesis of cotton flower like Ni–Co/Ni–Co–O–P as bifunctional active material for alkaline overall water splitting and acetaminophen sensing

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 76 , 2022 , Pages 32516-32530 ; 03603199 (ISSN) Asen, P ; Esfandiar, A ; Iraji zad, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The development of electrode materials with simple preparation, favorable price, excellent electrocatalytic activity, and stability are some of the most important issues in the field of electrochemistry. Herein, we prepared Ni–Co/Ni–Co–O–P cotton flower like on a copper sheet (CS) by a convenient, efficient, and scalable electrodeposition method. The Ni–Co/Ni–Co–O–P was employed as effective binder free electrode material in two different applications such as electrocatalytic water splitting and acetaminophen (APAP) sensor. Remarkably, the Ni–Co/Ni–Co–O–P@CS exhibits low overpotentials of 310 and 90 mV at 10 mA cm−2 for oxygen and hydrogen evolution reactions in alkaline media, respectively.... 

    Spark plasma sintered YSZ gas electrode produced from powders synthesized by a large-scale method

    , Article Materials Chemistry and Physics ; Volume 289 , 2022 ; 02540584 (ISSN) Ghayoor, R ; Yousefi, M. H ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Monitoring the oxygen in the fume and controlling its amount at high temperatures is an efficient way to regulate combustion efficiency. Zirconia can be an attractive candidate for use in oxygen sensors due to its good physical and chemical properties. The crystal structure of pure zirconia nanopowder due to the lack of cubic phase cannot be used for the fabrication of gas sensor electrodes. Moreover, the change of temperature during ceramic processing and application can promote structural and phase stresses. In this work, to achieve a pure cubic phase, yttria was successfully added to zirconia by a large-scale and effective method called Pechini. The yttria-stabilized zirconia nanopowders... 

    Nonenzymatic sweat-based glucose sensing by flower-like au nanostructures/graphene oxide

    , Article ACS Applied Nano Materials ; Volume 5, Issue 9 , 2022 , Pages 13361-13372 ; 25740970 (ISSN) Asen, P ; Esfandiar, A ; Kazemi, M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The development of a nonenzymatic glucose sensor working in real human body conditions through a noninvasive sampling approach has attracted considerable attention. Hence, this work focuses on the development of a new nonenzymatic glucose sensor based on flower-like Au nanostructures (F-AuNTs) and graphene oxide (GO) as a supporting matrix. The F-AuNTs-GO hybrid was synthesized by simple drop casting of the GO suspension onto the graphite sheet (GS) followed by electrodeposition of F-AuNTs on GO nanosheets at 3 V in a two-electrode system. The electrocatalytic activity of the F-AuNTs-GO/GS sensor toward glucose electrooxidation was initially evaluated in a 0.1 M buffer phosphate solution (pH... 

    Nickel-based nanosheets array as a binder free and highly efficient catalyst for electrochemical hydrogen evolution reaction

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 82 , 2022 , Pages 34887-34897 ; 03603199 (ISSN) Faraji, H ; Hemmati, K ; Mirabbaszadeh, K ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Hydrogen technology through water electrolyzer systems has attracted a great attention to overcome the energy crisis. So, rationally designed non-noble metal based-electrocatalysts with high activity and durability can lead to high performance water electrolyzer systems and high purity hydrogen generation. Herein, a facile two-step method: hydrothermal and electrodeposition, respectively, are developed to decorate highly porous three-dimensional binder-free structure NiFeO/NiO nanosheets array on Ni foam (NiFeO/NiO/NF) with robust adhesion as a high-performance electrode for Hydrogen Evolution Reaction (HER). The electrodeposition process applied after the initial hydrothermal process... 

    Direct decoration of carbon nanohorns with binary nickel-cobalt sulfide nanosheets towards non-enzymatic glucose sensing in human fluids

    , Article Electrochimica Acta ; Volume 428 , 2022 ; 00134686 (ISSN) Kachouei, M. A ; Hekmat, F ; Wang, H ; Amaratunga, G. A. J ; Unalan, H. E ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    A highly controllable, green, and rapid strategy is demonstrated for fabricating of highly sensitive non-enzymatic glucose sensing platforms. Carbon nanohorns (CNHs) were decorated onto the screen-printed electrodes. Binary nickel-cobalt sulfide (NiCo-S) nanosheets (NSs) were then deposited on CNH-casted electrodes by a facile and scalable method. Following detailed structural characterization and the electrocatalytic activity of the fabricated NiCo-S/CNH electrodes towards electro-oxidation of glucose was examined in detail. The proposed electrodes operated within two distinct linear dynamic ranges of 0.001- 0.330 mM and 0.330 - 4.53 mM with sensitivities of 1842 µA.mM−1.cm−2 and 854... 

    Plasma-enhanced chemical vapor deposition for fabrication of yolk-shell SnO2@Void@C nanowires, as an efficient carbon coating technique for improving lithium-ion battery performance

    , Article Materials Science in Semiconductor Processing ; Volume 149 , 2022 ; 13698001 (ISSN) Habibi, A ; Mousavi, M. R ; Yasoubi, M ; Sanaee, Z ; Ghasemi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This manuscript describes the implementation of plasma-enhanced chemical vapor deposition (DC-PECVD) and vapor-liquid-solid (VLS) techniques to fabricate a yolk-shell SnO2@Void@C nanowire (NW) structure. SnO2 nanowires have been synthesized on the stainless steel mesh substrate through the VLS method. The PECVD-assisted growth of carbon nanolayer on the SnO2 and SiO2 coated SnO2 NWs has been performed to fabricate SnO2@C core-shell and SnO2@SiO2@C yolk-shell structures, respectively. A consequent silica etching process converted the SnO2@SiO2@C into SnO2@Void@C structure. The electrochemical performance of bare SnO2 NWs, SnO2 NWs @ C, and SnO2 @Void @ C coaxial NWs structures have been... 

    Nanosized NiFeSe2/NiCo2O4 hierarchical arrays on Ni foam as an advanced electrocatalyst for hydrogen generation

    , Article Sustainable Energy and Fuels ; Volume 7, Issue 1 , 2022 , Pages 112-121 ; 23984902 (ISSN) Tasviri, M ; Shekarabi, S ; Taherinia, D ; Zare Pour, M. A ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    The rational design of composite catalysts is critically essential for electrochemical water splitting. Here, we report on a novel hierarchical composite that comprises NiFeSe2 nanoparticles and NiCo2O4 nanoflakes supported on nickel foam (NF) as an efficient electrocatalyst for the hydrogen evolution reaction (HER). The conjunction of the NiFeSe2 nanoparticles and NiCo2O4 nanoflakes introduces a new synergistic effect for the HER, resulting in an improved NiCo2O4 catalyst. The as-prepared NiFeSe2/NiCo2O4/NF electrode exhibited an enhanced HER activity, with a low overpotential of 83 mV at a current density of 10 mA cm−2, a low Tafel slope of 45 mV dec−1, and an excellent long-term... 

    Electrochemical properties of Ni3S2@MoS2-rGO ternary nanocomposite as a promising cathode for Ni–Zn batteries and catalyst towards hydrogen evolution reaction

    , Article Renewable Energy ; Volume 194 , 2022 , Pages 152-162 ; 09601481 (ISSN) Salarizadeh, P ; Rastgoo Deylami, M ; Askari, M. B ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The development of active and stable materials has great importance for the commercialization of nickel-zinc (Ni–Zn) batteries and hydrogen production. Transition metal sulfides have good theoretical properties for these applications. In this research, we present the synthesis and characterization of Ni3S2@MoS2 nanocatalyst and its hybrid with reduced graphene oxide (Ni3S2@MoS2-rGO). The capability of these materials is investigated as cathode material for Ni–Zn batteries and hydrogen evolution in alkaline media. In the case of Ni–Zn batteries, the assembled Ni3S2@MoS2-rGO//Zn battery shows a discharge capacity of 249.3 mAh g−1 with coulombic efficiency of 97.2%, showing a higher... 

    Titanium disulfide decorated hollow carbon spheres towards capacitive deionization

    , Article Desalination ; Volume 533 , 2022 ; 00119164 (ISSN) Ezzati, M ; Hekmat, F ; Shahrokhian, S ; Unalan, H. E ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Freshwater scarcity in conjunction with population expansion puts human survival in doubt. Throughout the world, millions of people are deprived of clean and safe drinking water. The development of novel technologies to desalinate water is among the most valuable studies for humanity. Receiving benefits from low energy consumption, high environmental capability, and low-production cost, capacitive deionization (CDI) received significant attention in saline water desalination. Rational design of efficient electrode materials by tailoring their structural and compositional properties, therefore, plays a pivotal role in achieving high-performance CDI systems. Hollow carbon spheres (HCSs) with... 

    A short review on transition metal chalcogenides/carbon nanocomposites for energy storage

    , Article Nano Futures ; Volume 6, Issue 3 , 2022 ; 23991984 (ISSN) Salarizadeh, P ; Rastgoo Deylami, M ; Askari, M. B ; Hooshyari, K ; Sharif University of Technology
    Institute of Physics  2022
    Abstract
    Introducing suitable electrode materials and electrolytes for supercapacitors and next-generation batteries should be considered for the industrial application of these devices. Among the proposed materials for them, transition metal chalcogenides (TMCs), are attractive and efficient options due to their unique properties such as appropriate layered structure, good oxidation state of transition metals, high thermal and mechanical stabilities, etc. However, applying other layered materials with high electrical conductivity e.g. carbon-based materials can lead to producing remarkable results for the mentioned applications. However, an interesting point is how making TMCs composite with... 

    Investigation of electrochemical parameters on cost-effective Zn/Ni-based electrocatalysts for electrochemical co2reduction reaction to syngas(H2+CO)

    , Article Journal of the Electrochemical Society ; Volume 169, Issue 4 , 2022 ; 00134651 (ISSN) Shahrestani, S ; Beheshti, M ; Kakooei, S ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    Electrochemical CO2 reduction reaction (CO2RR) has been studied in 0.1 M of KCl (pH of 6.96), NaHCO3 (pH of 8.3) and K2CO3 (pH of 11.36) cathodic solutions with various counter electrodes including graphite rod, SS316 rod and Pt mesh at different potential ranges on the Znx-Ni1-x bimetallic electrocatalysts. Among the Znx-Ni1-x electrocatalysts, the Zn-Ni electrode with a composition of 65 wt% Zn and 35 wt% Ni and cluster-like microstructure has the best performance for CO2RR by according to minimum coke formation and optimum CO and H2 faradaic efficiencies (CO FE% = 55% and H2 FE% = 45%). The cyclic voltammetry (CV) measurements and gas chromatography (GC) analysis for the CO2RR showed that... 

    An integrated human stress detection sensor using supervised algorithms

    , Article IEEE Sensors Journal ; Volume 22, Issue 8 , 2022 , Pages 8216-8223 ; 1530437X (ISSN) Mohammadi, A ; Fakharzadeh, M ; Baraeinejad, B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper adopts a holistic approach to stress detection issues in software and hardware phases and aims to develop and evaluate a specific low-power and low-cost sensor using physiological signals. First, a stress detection model is presented using a public data set, where four types of signals, temperature, respiration, electrocardiogram (ECG), and electrodermal activity (EDA), are processed to extract 65 features. Using Kruskal-Wallis analysis, it is shown that 43 out of 65 features demonstrate a significant difference between stress and relaxed states. K nearest neighbor (KNN) algorithm is implemented to distinguish these states, which yields a classification accuracy of 96.0 ± 2.4%. It... 

    Effect of Zn/Sn ratio on perovskite solar cell performance applying off-stoichiometric Cu2ZnSnS4/Carbon hole-collecting electrodes

    , Article ACS Applied Materials and Interfaces ; Volume 14, Issue 15 , 2022 , Pages 17296-17311 ; 19448244 (ISSN) Heidariramsheh, M ; Forouzandeh, M ; Taghavinia, N ; Mahdavi, S. M ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Low-cost inorganic hole-transporting materials (HTMs) accompanied by a printable carbon electrode is an efficient approach to address the limitation of material cost of perovskite solar cells (PSCs) and get this technology closer to commercialization. The present work is focused on optimizing the Zn/Sn ratio of Cu2ZnSnS4/carbon hole collectors in n-i-p structured PSCs, where CuInS2/carbon is applied as the reference hole collector. This composition regulation is a solution to address the challenge of composition-related defects of the Cu2ZnSnS4 (CZTS) material. The Zn/Sn ratio was tuned by the initial proportion of the zinc precursor during the nanoparticle (NP) synthesis using a heating-up... 

    Graphene oxide interlayered in binder-free sulfur vapor deposited cathode for lithium-sulfur battery

    , Article Journal of Physics D: Applied Physics ; Volume 55, Issue 16 , 2022 ; 00223727 (ISSN) Hakimi, M ; Sanaee, Z ; Ghasemi, S ; Mohajerzadeh, S ; Sharif University of Technology
    IOP Publishing Ltd  2022
    Abstract
    The main drawback of lithium-sulfur (Li-S) batteries which leads to a short lifetime, is the shuttle effect during the battery operation. One of the solutions to mitigate the shuttle effect is the utilization of interlayers. Herein, graphene oxide (GO) paper as an interlayer has been implemented between the sulfur cathode fabricated by the vapor deposition process as a binder-free electrode and a separator in a Li-S battery in order to gain a sufficient capacity. The morphological characteristics and electrochemical performance of the fabricated electrode have been investigated. The fabricated battery demonstrates an initial discharge capacity of 1265.46 mAh g-1 at the current density of 100... 

    Experimental investigation of the effect of copper electrodeposition on the aluminum surface and addition of ethylene glycol on boiling heat transfer coefficient

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 58, Issue 5 , 2022 , Pages 801-812 ; 09477411 (ISSN) Milani, P. A ; Mahdi, M ; Abarghooei, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    In this research, the effect of surface characteristics on boiling heat transfer has been investigated experimentally. For this purpose, a device with the ability to automatically record the liquid temperature of the inlet and outlet of the test area, calculate the coefficient of boiling heat transfer, and heat flux has been developed. The automatic temperature stability of the working fluid and the ability to investigate the effect of surfaces with different characteristics (in terms of material and surface structure) on the boiling heat transfer parameters are the most important features of this device. The performance of the experimental setup was evaluated by the modified "Chen" equation... 

    Comparison of hydrothermal and electrodeposition methods for the synthesis of CoSe2/CeO2 nanocomposites as electrocatalysts toward oxygen evolution reaction

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 40 , 2022 , Pages 17650-17661 ; 03603199 (ISSN) Taherinia, D ; Moazzeni, M ; Moravej, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Promoting efficacious and low-cost catalysts for the oxygen evolution reaction (OER), as the sluggish half-reaction of the water splitting, is inevitable to make sustainable energy technologies more promising. In this work, we report a series of novel nanocomposites comprising CeO2 nanorods decorated with CoSe2 nanoparticles. The nanocomposites were prepared via a conventional hydrothermal synthesis or a rapid electrodeposition process, and their structure, morphology, and electrochemical performance toward OER in alkaline solution were compared. To tune the electrocatalytic activity, the mass ratio of CoSe2 to CeO2 was systematically varied. Compared with the hydrothermal synthesis, the... 

    Hierarchical nickel-cobalt sulfide/niobium pentoxide decorated green carbon spheres toward efficient energy storage

    , Article Sustainable Energy and Fuels ; Volume 6, Issue 12 , 2022 , Pages 3042-3055 ; 23984902 (ISSN) Hekmat, F ; Shahi, M ; Dubal, D. P ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Progression in the renewable energy field is tied to the development of high-performance energy storage devices with superior power and energy densities. Herein, an innovative material design was employed to prepare binder-free nickel-cobalt sulfide (NCS) on niobium pentoxide (Nb2O5)-decorated carbon spheres (CSs). Initially, CSs were directly grown on nickel foam (NF) via a hydrothermal carbonization approach. Core/shell-like NCS@Nb2O5@CS-NF was then synthesized through a hydrothermal process, followed by an electrodeposition process. When employed as an electrode material, NCS@Nb2O5@CS-NF achieved an excellent volumetric capacity of 9300 C L−1 at a current density of 18 A L−1. Later, an... 

    Effect of electrodeposition time on the super-capacitive performance of electrodeposited MnO2 on g-C3N4 nanosheets

    , Article Journal of Alloys and Compounds ; Volume 904 , 2022 ; 09258388 (ISSN) Soltani, H ; Bahiraei, H ; Ghasemi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Herein, the effect of electrodeposition time on the super-capacitive performance of three-dimensional (3D) MnO2/g-C3N4 heterostructured electrodes was investigated. MnO2 nanoparticles were electrodeposited on the g-C3N4 nanosheets drop-casted on the Ni foam substrate. The microstructural analysis, carried out by FE-SEM and TEM, confirmed the homogeneous distribution of MnO2 nanoparticles on g-C3N4 nano-sheet layers. The electrochemical capacitive performances of the MnO2/g-C3N4 electrodes were evaluated by cyclic voltammetry (CV), galvanostatic charge/discharge tests, and electrochemical impedance spectra (EIS). The obtained results suggested that the supercapacitor (SC) performance of all... 

    Facile electrochemical detection of morpholine in boiler water with carbon nanostructures: a comparative study of graphene and carbon nanotubes

    , Article Bulletin of Materials Science ; Volume 45, Issue 2 , 2022 ; 02504707 (ISSN) de Oliveira, S. M ; dos Santos Castro Assis, K. L ; Paiva, V. M ; Hashempour, M ; Bestetti, M ; de Araújo, J. R ; D’Elia, E ; Sharif University of Technology
    Springer  2022
    Abstract
    Two electrochemical sensors based on modified glassy carbon electrodes with carbon nanostructures as graphene (GCE–EG) and carbon nanotubes (GCE–CNT) were evaluated for morpholine analysis. The carbon nanostructures were obtained and characterized using X-ray photoelectron spectroscopy, Raman spectroscopy, X-ray diffraction, transmission electron microscopy, high-resolution transmission electron microscopy and cyclic voltammetry. All spectroscopic and microscopic techniques confirmed the procurement of graphene and CNT. The electrochemical studies proved the efficient behaviour of both electrodes GCE–EG and GCE–CNT in sensing and detection of morpholine via differential pulse voltammetry.... 

    Cobalt vanadium chalcogenide microspheres decorated with dendrite-like fiber nanostructures for flexible wire-typed energy conversion and storage microdevices

    , Article Nanoscale ; Volume 14, Issue 25 , 2022 , Pages 9150-9168 ; 20403364 (ISSN) Naderi, L ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    The increasing energy demand for next-generation portable and miniaturized electronics has drawn tremendous attention to develop microscale energy storage and conversion devices with light weight and flexible characteristics. Herein, we report the preparation of flower-like cobalt vanadium selenide/nickel copper selenide (CoVSe/NiCuSe) microspheres with three-dimensional hierarchical structure of micropore growth on copper wire for a flexible fiber microsupercapacitor (microSC) and overall water splitting. The CoV-LDH microspheres are anchored on the dendrite-like NiCu nanostructured Cu wire using a hydrothermal method (CoV-LDH/NiCu@CW). The sulfidation and selenization of CoV-LDH/NiCu was...