Loading...
Search for: emulsion-stability
0.01 seconds

    Evaluation the Effect of Emulsifier Type and Concentration on Emulsion Stability in Synthetic based Muds

    , M.Sc. Thesis Sharif University of Technology Moradi Liavoli, Mohammad Ali (Author) ; Taghikhani, Vahid (Supervisor)
    Abstract
    Synthetic based fluid has been introduced since 1990 as an alternative to conventional oil-based fluid, which, like oil-based mud, is effective wherever the use of water-based mud is problematic. This type of fluid with similar performance to oil-based mud is environmentally acceptable and the safety of working with this fluid is higher for drilling rig personnel. cutting drilled with synthetic base fluid can be discharged into ocean and sea waters, and this can reduce the total cost of drilling compared to oil-based mud because there isn't need to transport the cutting to offshore and dispose of them and consequently drilling is reduced. In terms of safety, these fluids reduce the risk of... 

    Evaluation of the Surface Activity of Novel Ionic Liquids and Their Application in the Enhanced Oil Recovery Process

    , M.Sc. Thesis Sharif University of Technology Hosseinzadeh Semnani, Radman (Author) ; Taghikhani, Vahid (Supervisor) ; Mokhtarani, Babak (Supervisor) ; Baghban Salehi, Mahsa (Co-Supervisor)
    Abstract
    The following dissertation discusses Ionic Liquids (ILs) as an alternative to commercial surfactants for use in the Enhanced Oil Recovery process. Ionic Liquids came to researchers’ attention due to their environmental nature and their tolerance for high temperatures and salinity. In this work, firstly, an extensive literature review is carried out, and then, experiments are designed and performed to evaluate ILs’ surface activity and performance in a lab-scale EOR set-up. The Ionic Liquids used in this work consist of three types of methylimidazolium nitrate, [MIM]+[NO3]-, with three different alkyl chain lengths. This combination, and specifically the effect of nitrate anions on EOR and... 

    Evaluation of chemicals interaction with heavy crude oil through water/oil emulsion and interfacial tension study

    , Article Energy and Fuels ; Vol. 27, issue. 10 , September , 2013 , p. 5852-5860 ; ISSN: 08870624 Dehghan, A. A ; Masihi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    A newly-designed surfactant was formulated to tolerate the harsh conditions of oil reservoirs, including high salinity of the formation brine and temperature. The specific emulsion and interfacial tension (IFT) behavior of this new surface active agent were investigated by performing emulsion stability tests, emulsion size analysis, and IFT behavior in the presence of four different types of alkalis. Image processing was utilized to analyze the droplet size distribution using microscopic images of the samples. The results show that depending on the composition of the mixtures, the optimum phase region and interfacial tension behavior change considerably. Solutions containing a higher... 

    The effect of dispersed phase salinity on water-in-oil emulsion flow performance: A micromodel study

    , Article Industrial and Engineering Chemistry Research ; Volume 56, Issue 15 , 2017 , Pages 4549-4561 ; 08885885 (ISSN) Maaref, S ; Ayatollahi, S ; Rezaei, N ; Masihi, M ; Sharif University of Technology
    American Chemical Society  2017
    Abstract
    In this work, the effect of brine salinity on water-in-oil emulsion flow performance in porous media is studied as it imposes a significant challenge to oil production in the petroleum industry. A crude oil sample from an Iranian oilfield and synthetic brine with different salinities (40-140 g/L salt) are used. The results show that the emulsion viscosity and interfacial tension increase slightly with salinity, while they do not considerably affect the flow behavior. The emulsion stability analysis shows that larger w/o emulsion droplets are formed for higher brine salinity, which potentially block more pore spaces through straining and interception mechanisms. This phenomenon resulted in... 

    A mechanistic study of emulsion flooding for mobility control in the presence of fatty acids: Effect of chain length

    , Article Fuel ; Volume 276 , 2020 Alizadeh, S ; Suleymani, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Emulsion flooding is a promising method for enhanced oil recovery (EOR). The static and dynamic behavior of the emulsions is greatly influenced by the nature of the applied surfactant. In this work, the effect of fatty acids, as natural surface-active agents, and their chain length on the emulsion behavior was investigated in both bulk and porous media. A panel of the fatty acids with different chain lengths (6 < C < 18) was applied at constant concentration and pH. Upon the static stability tests, emulsion stability at the optimum value of chain length (C14) was increased by two orders of magnitude. Under the optimal condition, the hydrogen bonding between dissociated and undissociated... 

    Bacteria cell hydrophobicity and interfacial properties relationships: A new MEOR approach

    , Article Colloids and Interfaces ; Volume 5, Issue 4 , 2021 ; 25045377 (ISSN) Ganji Azad, E ; Javadi, A ; Jahanbani Veshareh, M ; Ayatollahi, S ; Miller, R ; Sharif University of Technology
    MDPI  2021
    Abstract
    For microbial enhanced oil recovery (MEOR), different mechanisms have been introduced. In some of these papers, the phenomena and mechanisms related to biosurfactants produced by certain microorganisms were discussed, while others studied the direct impacts of the properties of microorganisms on the related mechanisms. However, there are only very few papers dealing with the direct impacts of microorganisms on interfacial properties. In the present work, the interfacial properties of three bacteria MJ02 (Bacillus Subtilis type), MJ03 (Pseudomonas Aeruginosa type), and RAG1 (Acinetobacter Calcoaceticus type) with the hydrophobicity factors 2, 34, and 79% were studied, along with their direct... 

    A mechanistic understanding of the water-in-heavy oil emulsion viscosity variation: effect of asphaltene and wax migration

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 608 , 2021 ; 09277757 (ISSN) Piroozian, A ; Hemmati, M ; Safari, M ; Rahimi, A ; Rahmani, O ; Aminpour, S. M ; Beiranvand Pour, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The role of emulsions as a prevalent phenomenon is broadly investigated in the petroleum industry since forming the emulsion has many severe harmful implications. Heavy components of crude oil such as wax and asphaltene make the water-in-oil (w/o) emulsion more stable, while the role of these components on the emulsion viscosity has not been fully understood. In this regard, to find a proper demulsifier to break these emulsions, it is necessary to know the mechanisms of emulsion formation by heavy oil components. In this study, the effects of waxy-oil and asphaltenic-oil on w/o emulsion were investigated by measuring volume and viscosity of the formed emulsion after an elapsed time, followed... 

    Evaluation of the interfacial activity of imidazolium-based ionic liquids and their application in enhanced oil recovery process

    , Article Journal of Molecular Liquids ; Volume 362 , 2022 ; 01677322 (ISSN) Hosseinzadeh Semnani, R ; Salehi, M. B ; Mokhtarani, B ; Sharifi, A ; Mirzaei, M ; Taghikhani, V ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Ionic liquids (ILs) are a growing trend in Enhanced Oil Recovery (EOR) studies as alternatives to commercial surfactants due to their environmentally friendly nature, and their resistance in harsh temperatures and salinities. ILs are customizable and come in an immense variety, and therefore, it is vital that different combinations of cation/anion be investigated for use in the industry. In this work, experiments are designed and performed to evaluate novel ILs’ surface activity and performance in a lab-scale EOR set-up, compatible with Iranian oil reservoir conditions. Three imidazolium-based ionic liquids were used, namely, butyl-methylimidazolium nitrate, hexyl-methylimidazolium nitrate,...