Loading...
Search for: energy-dispersions
0.012 seconds
Total 216 records

    Wettability and rheological behavior of low Ag lead-free SAC/graphene and cobalt-graphene nanocomposite solder paste

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 53, Issue 8 , 2022 , Pages 2811-2822 ; 10735623 (ISSN) Tamizi, M ; Movahedi, M ; Kokabi, A. H ; Miyashita, Y ; Azghandi Rad, S ; Sharif University of Technology
    Springer  2022
    Abstract
    The impacts of dopant nanoparticles, graphene nanosheets (GNSs) and cobalt decorated-graphene nanosheets (CoGNSs), were studied in relation to the wettability and rheological behavior in low-Ag lead-free SAC0307 (Sn–0.3Ag–0.7Cu) solder paste. The solidification range of the solders was evaluated using differential scanning calorimetry. Phase identification in the solder bulk and interface of the solder and copper substrate was carried out by X-ray diffraction and energy-dispersive X-ray spectroscopy. Spreading properties and reactive wetting behavior along with the rheological properties of the solders were also studied. Results showed that the addition of both nanoparticles did not... 

    Wettability alteration of calcite rock from gas- repellent to gas-wet using a fluorinated nanofluid: A surface analysis study

    , Article Journal of Natural Gas Science and Engineering ; Volume 83 , 2020 Azadi Tabar, M ; Shafiei, Y ; Shayesteh, M ; Dehghan Monfared, A ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Wettability alteration analysis form gas-repellent to gas-wet with the aid of chemical agents has been subjected of numerous studies. However, fundamental understanding of the effect of surface tension of liquid on repellency strength, the change in the intermolecular forces due to the adsorption of nanoparticles onto the rock surfaces, and exposure of treated rock in brine are not well discussed in the available literature. In this study, X-ray diffraction, Atomic Force Microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy were applied to characterize the treated and fresh samples. Dynamic and static contact angle measurements were then combined with six methods... 

    Welding of Al-Mg aluminum alloy to aluminum clad steel sheet using pulsed gas tungsten arc process

    , Article Journal of Manufacturing Processes ; Volume 31 , 2018 , Pages 494-501 ; 15266125 (ISSN) Hasanniah, A ; Movahedi, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Al-Mg aluminum alloy was lap joined to aluminum clad steel sheet using pulsed gas tungsten arc welding process and Al-Si filler metal. The effects of the welding heat-input were investigated on the joint microstructure and mechanical properties. Weld metal microstructure, formation of intermetallic compounds (IMCs) at the joint interface and the fracture locations were studied using stereo, optical and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS). The joint strength of the welds was evaluated by shear-tensile test. The results showed that presence of a thin aluminum clad layer with 350 μm thickness drastically decreased the Al-Fe intermetallic... 

    Visible photodecomposition of methylene blue over micro arc oxidized WO3-loaded TiO2 nano-porous layers

    , Article Applied Catalysis A: General ; Volume 382, Issue 2 , Jan , 2010 , Pages 322-331 ; 0926860X (ISSN) Bayati, M. R ; Golestani Fard, F ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    WO3-TiO2 nano porous layers were synthesized by micro arc oxidation (MAO) process under different applied voltages in electrolytes containing sodium tungstate and phosphate salts with various concentrations. X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and energy dispersive X-ray spectroscopy (EDS) techniques were employed to study phase structure and chemical composition of the layers. According to our data analysis, the nano porous layers consisted of anatase, rutile, and tungsten oxide phases with a varying fraction depending on the voltage and electrolyte concentration. Moreover, it was found that WO3 not only dispersed in the TiO2 matrix, but also doped into the TiO2... 

    Vertically standing Cu2O nanosheets promoted flower-like PtPd nanostructures supported on reduced graphene oxide for methanol electro-oxidation

    , Article Electrochimica Acta ; Volume 259 , 2018 , Pages 36-47 ; 00134686 (ISSN) Shahrokhian, S ; Rezaee, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The present study reports a simple electrochemical approach to the fabrication of a new nanocomposite containing PtPd nanoflowers (NFs) promoted with two-dimensional (2D) nanosheets (NSs) structure cuprous oxide (Cu2O) supported on reduced graphene oxide (rGO) (PtPd-NFs/Cu2O-NSs/rGO). Scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra, Raman spectroscopy, and energy dispersive X-ray spectroscopy are used for characterization of the PtPd-NPs/Cu2O-NPs/rGO. SEM images showed that vertical-standing arrays of Cu2O with an edge length up to 1 μm and thickness of about 20 nm are electrodeposited on the surface of rGO film. Also, PtPd needle-like NFs with visible and... 

    Vanadium supported on spinel cobalt ferrite nanoparticles as an efficient and magnetically recoverable catalyst for oxidative degradation of methylene blue

    , Article Applied Organometallic Chemistry ; Volume 33, Issue 10 , 2019 ; 02682605 (ISSN) Salami, R ; Amini, M ; Bagherzadeh, M ; Hosseini, H ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    Vanadium supported on spinel cobalt ferrite nanoparticles was synthesized and characterized using Fourier transform infrared spectroscopy, X-ray diffraction, energy-dispersive X-ray analysis and transmission electron microscopy. For the first time, the prepared material was used for the catalytic degradation of methylene blue as an organic dye in the presence of hydrogen peroxide as a green oxidant and NaHCO3 as a co-reagent at room temperature. The dependency of removal percentage on various parameters such as amount of catalyst, pH, reaction time and temperature and the effect of radical scavenging agents were studied. Finally, recoverability and reusability of the vanadium supported on... 

    Ugi four-component assembly process: An efficient approach for one-pot multifunctionalization of nanographene oxide in water and its application in lipase immobilization

    , Article Chemistry of Materials ; Volume 28, Issue 9 , 2016 , Pages 3004-3016 ; 08974756 (ISSN) Rezaei, A ; Akhavan, O ; Hashemi, E ; Shamsara, M ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    Graphene-based materials are revealing the leading edge of advanced technology for their exceptional physical and chemical properties. Chemical manipulation on graphene surface to tailor its unique properties and modify atomic structures is being actively pursued. Therefore, the discovery of robust and general protocols to anchor active functionality on graphene basal plane is still of great interest. Multicomponent reactions promise an enormous level of interest due to addressing both diversity and complexity in combinatorial synthesis, in which more than two starting compounds react to form a product derived from entire inputs. In this article, we present the first covalent... 

    Tribological properties of Ni–P–SiO2 nanocomposite coating on aluminum

    , Article Colloid Journal ; Volume 77, Issue 5 , September , 2015 , Pages 628-634 ; 1061933X (ISSN) Sadreddini, S ; Afshar, A ; Jazani, M. A ; Sharif University of Technology
    Maik Nauka Publishing / Springer SBM  2015
    Abstract
    In this study, the effects of different concentrations of SiO2 nanosized particles in the bath on deposition rate, surface morphology and wear behavior of Ni–P–SiO2 composite coatings were investigated. The rate of coating deposition was influenced by the incorporation of SiO2 particles. The observations of microstructural morphology were performed with field emission scanning electron microscopy. The amount of deposited SiO2 was examined by X-ray energy dispersive analysis. The results showed that for the coating produced at 12.5 g/L of nanoparticles, the amount of co-deposited SiO2 nanoparticles and microhardness reached their maximal... 

    Tribological characterization of electroless Ni-10% P coatings at elevated test temperature under dry conditions

    , Article International Journal of Advanced Manufacturing Technology ; Volume 62, Issue 9-12 , October , 2012 , Pages 1063-1070 ; 02683768 (ISSN) Masoumi, F ; Ghasemi, H. R ; Ziaei, A. A ; Shahriari, D ; Sharif University of Technology
    Springer  2012
    Abstract
    An experimental study of wear characteristics of electroless Ni-10% P coating sliding against hard AISI 52100 steel pin is investigated. Experiments are carried out at room and 550°C temperatures. Heat treatment effects on tribological behavior of this coating are studied. The wear surface and the microstructure of the coatings are analyzed using optical microscopy, scanning electron microscopy, energy dispersion analysis X-ray, and microhardness testing equipment. It is observed that the forming of continuous oxide film on contacting surfaces of pin and disk improves wear resistance and decreases friction coefficient of the Ni-10% P coating. The results indicate that the wear resistance of... 

    Transition metal ions effect on the properties and photocatalytic activity of nanocrystalline TiO2 prepared in an ionic liquid

    , Article Journal of Hazardous Materials ; Volume 172, Issue 2-3 , 2009 , Pages 1573-1578 ; 03043894 (ISSN) Ghasemi, S ; Rahimnejad, S ; Setayesh, S. R ; Rohani, S ; Gholami, M. R ; Sharif University of Technology
    Abstract
    TiO2 and transition metal (Cr, Mn, Fe, Co, Ni, Cu, and Zn) doped TiO2 nanoparticles were synthesized by the sol-gel method using 2-hydroxylethylammonium formate as an ionic liquid. All the prepared samples were calcined at 500 °C and characterized by X-ray diffraction (XRD), BET surface area determination, energy dispersive X-ray (EDX) analysis, diffuse reflectance spectroscopy (DRS), and Fourier transformed infrared (FT-IR) techniques. The studies revealed that transition metal (TM) doped nanoparticles have smaller crystalline size and higher surface area than pure TiO2. Dopant ions in the TiO2 structure caused significant absorption shift into the visible region. The results of... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; 2017 , Pages 1-14 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Zad, A. I ; Sharif University of Technology
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    Transition metal ions-doped polyaniline/graphene oxide nanostructure as high performance electrode for supercapacitor applications

    , Article Journal of Solid State Electrochemistry ; Volume 22, Issue 4 , 2018 , Pages 983-996 ; 14328488 (ISSN) Asen, P ; Shahrokhian, S ; Iraji Zad, A ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Polyaniline/graphene oxide (PANI/GO) co-doped with Zn2+ and Fe3+ was synthesized via a simple and low cost one-step chronoamperometry method on stainless steel (SS) as the substrate. The Fe3+-Zn2+-PANI/GO nanocomposite is characterized using X-ray diffraction as well as Fourier transform infrared spectroscopy, energy-dispersive X-ray spectroscopy, transmission electron microscopy, and field emission scanning electron microscopy. Also, cyclic voltammetry, galvanostatic charge-discharge, and electrochemical impedance spectroscopy are used to study the electrochemical performance of the as-prepared electrode materials. Significantly, the Fe3+-Zn2+-PANI/GO nanocomposite exhibits a specific... 

    Transient liquid phase bonding of dual phase steels using Fe-based, Ni-based, and pure Cu interlayers

    , Article Journal of Manufacturing Processes ; Volume 30 , 2017 , Pages 106-115 ; 15266125 (ISSN) Azqadan, E ; Ekrami, A ; Sharif University of Technology
    Abstract
    Transient liquid phase (TLP) bonding is a joining process which combines benefits of diffusion bonding and brazing. Therefore, this method has widely been used in joining of materials which are sensitive to fusion welding. Interlayer composition, as one of the most important factors of TLP bonding, can affect the bonding region composition, microstructure, and hence mechanical properties of the joint. In this research, Fe-based, Ni-based, and commercially pure Cu interlayers are used to bond low-carbon steel components which are then heat treated to produce dual phase steel. The present work focuses on two main goals. Firstly, drawing a comparison of microstructure and mechanical properties... 

    Toward higher extraction and enrichment factors via a double-reservoirs microfluidic device as a micro-extractive platform

    , Article Journal of Separation Science ; Volume 42, Issue 18 , 2019 , Pages 2985-2992 ; 16159306 (ISSN) Rezvani, O ; Baraazandeh, M ; Bagheri, H ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    In this study, firstly, a double-reservoir and switchable prototype of a micro-chip along with the respective holders were fabricated. A cyclic desorption process using microliter volume of organic solvent was adopted to prevent any outdoor contamination. As extractive phases, two identical sheets of electrospun polyamide/polypyrrole/titania nanofibers were synthesized using core–shell electro-spinning technique and utilized for determination of memantine in plasma samples. Field emission scanning electron microscopy images showed a high degree of porosity and homogeneity throughout the sheet structure. Also, energy dispersive X-ray analysis confirmed the presence of titania, while the... 

    The study of electrodeposition of hydroxyapatite-ZrO2-TiO2 nanocomposite coatings on 316 stainless steel

    , Article Surface and Coatings Technology ; Volume 339 , 2018 , Pages 199-207 ; 02578972 (ISSN) Poorraeisi, M ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this research pure HA and HA-ZrO2-TiO2 nanocomposite coatings (named HZT coatings) were successfully synthesized by merging two usual electroplating methods. In order to deposit pure HA coating a particular saline solution of Calcium and Phosphate was prepared with pH = 4.2, thermodynamically rich of hydroxyapatite. XRD and FTIR studies prove the synthesis of hydroxyapatite during electrodeposition process. To synthesize composite coatings with rational molar ratios of composite agents to matrix, two different concentrations of ZrO2-TiO2 suspensions were added to Ca-P solution at the pH = 4.2 and electrodeposition process done similar to pure HA sample. XRD, FTIR and FESEM (EDS) analyses... 

    The influence of surface nanocrystallization induced by shot peening on corrosion behavior of niti alloy

    , Article Journal of Materials Engineering and Performance ; Volume 24, Issue 8 , August , 2015 , Pages 3093-3099 ; 10599495 (ISSN) Olumi, S ; Sadrnezhaad, S. K ; Atai, M ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Nickel-titanium (NiTi) shape memory alloys have been widely used as implant materials, due to their superior shape memory properties and similar mechanical behavior to bone tissue. The presence of nickel on the surface of nickel-titanium alloy and release of this ion in the body environment will result in some allergic reactions. In current study, we used shot pinning process to produce nanocrystalline nickel-titanium alloy with increased corrosion resistance. Field emission scanning electron microscopy (FE-SEM), x-ray diffraction (XRD) analysis, and atomic force microscopy were employed to investigate the surface features of samples. The quantitative chemical analysis of NiTi and modified... 

    The effects of pulse plating variables on morphology and corrosion behavior of Zn-Fe alloy coatings

    , Article Journal of Coatings Technology Research ; Volume 9, Issue 2 , 2012 , Pages 215-218 ; 15470091 (ISSN) Roshanghias, A ; Heydarzadeh Sohi, M ; Sharif University of Technology
    2012
    Abstract
    Considerable researches have been focused on zinc-iron (Zn-Fe) alloy coatings due to their superior characteristics among zinc alloy electrodeposits in recent years. The corrosion behavior of these coatings depends on the phase structure and morphology of the Zn-Fe deposits. In this work the effects of pulse plating variables such as current density, off-time, frequency and pulse modes on the morphology and phase structure of Zn-Fe deposits was studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and energy dispersive spectrometry (EDS) analysis. The corrosion behavior of these coatings was measured by means of polarization curves and Neutral salt spray tests. It was shown... 

    The effect of titanium dioxide (TiO2) nanoparticles on hydroxyapatite (HA)/TiO2 composite coating fabricated by electrophoretic deposition (EPD)

    , Article Journal of Materials Engineering and Performance ; Volume 27, Issue 5 , May , 2018 , Pages 2338-2344 ; 10599495 (ISSN) Amirnejad, M ; Afshar, A ; Salehi, S ; Sharif University of Technology
    Springer New York LLC  2018
    Abstract
    Composite coatings of Hydroxyapatite (HA) with ceramics, polymers and metals are used to modify the surface structure of implants. In this research, HA/TiO2 composite coating was fabricated by electrophoretic deposition (EPD) on 316 stainless steel substrate. HA/TiO2 composite coatings with 5, 10 and 20 wt.% of TiO2, deposited at 40 V and 90 s as an optimum condition. The samples coated at this condition led to an adherent, continuous and crack-free coating. The influence of TiO2 content was studied by performing different characterization methods such as scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDS), corrosion resistance in simulated body fluid (SBF),... 

    The effect of heat treatment on properties of Ni–P–SiO2 nano-composite coating

    , Article Protection of Metals and Physical Chemistry of Surfaces ; Volume 52, Issue 3 , 2016 , Pages 492-499 ; 20702051 (ISSN) Sadreddini, S ; Afshar, A ; Sharif University of Technology
    Maik Nauka Publishing / Springer SBM 
    Abstract
    In this study, the surface morphology of Ni–P–SiO2 composite coating was investigated by field emission scanning electron microscopy (FESEM). The amount of SiO2 in the coating was examined by energy dispersive analysis of X-ray (EDX) and the Corrosion behavior of coating was evaluated by electrochemical impedance spectroscopy (EIS) and polarization techniques, showing the corrosion resistance of Ni–P–SiO2 diminished after heat treatment. The results showed that in the coating with 12.5 g/L SiO2, the coating hardness enhanced from 453VH to 980 VH before and after heat treatment. Furthermore, the wear behavior of the coating was analyzed before and after heat treatment  

    The effect of growth parameters on photo-catalytic performance of the MAO-synthesized TiO2 nano-porous layers

    , Article Materials Chemistry and Physics ; Volume 120, Issue 2-3 , 2010 , Pages 582-589 ; 02540584 (ISSN) Bayati, M. R ; Golestani Fard, F ; Moshfegh, A. Z ; Sharif University of Technology
    2010
    Abstract
    In this research, the effect of applied voltage and electrolyte concentration on structure, chemical composition, optical properties, and especially photo-catalytic activity of the TiO2 layers containing micro/nano-sized pores are discussed. TiO2 layers were synthesized by micro arc oxidation (MAO) process using different electrolyte concentrations and applied voltages. Surface structure of the layers was studied by scanning electron microscope (SEM); furthermore, energy dispersive spectrophotometry (EDS), X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS) techniques were employed to determine phase structure and chemical composition of the layers. Photo-activity of the...