Loading...
Search for: enhanced-recovery
0.01 seconds
Total 188 records

    Evaluation of the interfacial activity of imidazolium-based ionic liquids and their application in enhanced oil recovery process

    , Article Journal of Molecular Liquids ; Volume 362 , 2022 ; 01677322 (ISSN) Hosseinzadeh Semnani, R ; Salehi, M. B ; Mokhtarani, B ; Sharifi, A ; Mirzaei, M ; Taghikhani, V ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Ionic liquids (ILs) are a growing trend in Enhanced Oil Recovery (EOR) studies as alternatives to commercial surfactants due to their environmentally friendly nature, and their resistance in harsh temperatures and salinities. ILs are customizable and come in an immense variety, and therefore, it is vital that different combinations of cation/anion be investigated for use in the industry. In this work, experiments are designed and performed to evaluate novel ILs’ surface activity and performance in a lab-scale EOR set-up, compatible with Iranian oil reservoir conditions. Three imidazolium-based ionic liquids were used, namely, butyl-methylimidazolium nitrate, hexyl-methylimidazolium nitrate,... 

    Impact of rock morphology on the dominating enhanced oil recovery mechanisms by low salinity water flooding in carbonate rocks

    , Article Fuel ; Volume 324 , 2022 ; 00162361 (ISSN) Farhadi, H ; Ayatollahi, S ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Because of the complex nature of carbonate reservoirs, the required conditions for effective Low Salinity Water Flooding (LSWF) in these reservoirs need further and in depth investigation. In the present study, three calcite cores, i.e. Cal-1, Cal-2, and IL, with the same chemical composition are subjected to tertiary low salinity water flooding (LSWF), while the crude oil and composition of flooding brine kept the same. The experimental results show significant difference in the amount of enhanced oil recovery, as IL had the most additional oil recovery (20.8 % of IOIP), followed by Cal-2 (10.5 % of IOIP) and Cal-1 (3.9 % of IOIP). The results of contact angle, zeta potential, and effluent... 

    Effect of brine salinity and hydrolyzed polyacrylamide concentration on the Oil/Brine and Brine/Rock Interactions: Implications on enhanced oil recovery by hybrid low salinity polymer flooding in sandstones

    , Article Fuel ; Volume 324 , 2022 ; 00162361 (ISSN) Amiri, M ; Fatemi, M ; Biniaz Delijani, E ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The main idea behind the application of Low salinity polymer flooding (LSPF) enhanced oil recovery (EOR) method is that diluted brine improves the oil recovery by wettability alteration from oil-wet (OW) towards water-wet (WW) condition, while polymer enhances the mobility of the displacing phase. However the possible effect of polymer on the fluid/fluid and fluid/rock interactions are not investigated systematically in the literature. The main objective of the present reserach is to examine the possible effect of hybrid application of low-salinity and polymer on the brine/rock and brine/oil interfaces properties. Formation water (FW) and sea water (SW) and its two different dilutions, i.e.... 

    Microfluidics experimental investigation of the mechanisms of enhanced oil recovery by low salinity water flooding in fractured porous media

    , Article Fuel ; Volume 314 , 2022 ; 00162361 (ISSN) Mahmoudzadeh, A ; Fatemi, M ; Masihi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Spontaneous imbibition of water from fracture into the matrix is considered as one of the most important recovery mechanisms in the fractured porous media. However, water cannot spontaneously imbibe into the oil-wet rocks and as a result oil won't be produced, unless the capillary pressure barrier between fracture conduits and matrix is overcome. Wettability alteration is known as the main affecting mechanism for low salinity water flooding (LSWF), however, its effectiveness in fractured porous media has been less investigated, especially in the case of possible pore scale displacement mechanisms. In this study, the effectiveness of LSWF (diluted seawater) on oil recovery is compared to the... 

    Pore network-scale visualization of the effect of brine composition on sweep efficiency and speed of oil recovery from carbonates using a photolithography-based calcite microfluidic model

    , Article Journal of Petroleum Science and Engineering ; Volume 208 , 2022 ; 09204105 (ISSN) Mohammadi, M ; Nikbin Fashkacheh, H ; Mahani, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    A novel photolithography-based technique was developed to fabricate a quasi-2D heterogeneous calcite micromodel of representative elementary volume size. The effect of brine-chemistry on the mobilization of capillarity and heterogeneity trapped oil after high salinity water injection was evaluated by using diluted seawater, and seawater modified with calcium, sulphate, and silica nanoparticles. Preliminary brine screening was performed based on modified contact angle experiments under dynamic salinity alteration. The main findings are that the chemical composition of brine impacts both the ultimate oil recovery and its speed. The highest and fastest oil recovery was obtained with diluted... 

    The non-linear effect of oil polarity on the efficiency of low salinity waterflooding: A pore-level investigation

    , Article Journal of Molecular Liquids ; Volume 346 , 2022 ; 01677322 (ISSN) Golmohammadi, M ; Mohammadi, S ; Mahani, H ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Oil polarity is an important property impacting the efficiency of low salinity waterflooding (LSWF). It directly affects fluid/fluid and rock/fluid interactions, controlling the interfacial properties and forces. However, the current findings in the literature on the effect of concentration of polar components on oil recovery by LSWF are contradictory. Therefore, the main objective of this paper is to investigate how the type of non-polar fractions and the concentration of acidic polar oil constituents change the trapped oil saturation at the pore-scale during LSWF. In this regard, we conducted a series of microfluidics LSWF experiments in both secondary and tertiary modes, using clay-free... 

    Assessment of two-phase relative permeability hysteresis models for oil/water, gas/water and gas/oil systems in mixed-wet porous media

    , Article Fuel ; Volume 309 , 2022 ; 00162361 (ISSN) Foroudi, S ; Gharavi, A ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Accurate determination of relative permeability curves and their hysteresis is vital for reliable prediction of the performance of oil and gas reservoirs under enhanced recovery processes. Two out of the three available approaches to simulate three-phase relative permeability hysteresis are based on two-phase hysteresis. A few options (e.g., Carlson, Killough and Jargon models) are available in commercial reservoir simulators to account for hysteresis in relative permeability curves under two-phase flow. These models are based on the assumptions of water-wet state of the rocks, while most of the reservoir rocks are mixed-wet. As a result the aim of the present work is to evaluate the... 

    A laboratory approach to enhance oil recovery factor in a low permeable reservoir by active carbonated water injection

    , Article Energy Reports ; Volume 7 , 2021 , Pages 3149-3155 ; 23524847 (ISSN) Chen, X ; Paprouschi, A ; Elveny, M ; Podoprigora, D ; Korobov, G ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this paper, different injectivity scenarios were experimentally investigated in a coreflooding system to observe the efficiency of each method in laboratory conditions. Surfactant flooding, CO2 injection, carbonated water injection (CWI), active carbonated water injection (ACWI), after water flooding were investigated through the coreflooding system. First, it is necessary to optimize the surfactant concentration and then use it in ACWI injection. To do this, linear alkylbenzene sulfonic acid (LABSA) was used as a cationic surfactant at different concentrations. It was observed that 0.6 PV concentration of LABSA had an optimum result as increasing the surfactant concentration would not be... 

    Mechanistic investigation of the synergy of a wide range of salinities and ionic liquids for enhanced oil recovery: Fluid-fluid interactions

    , Article Energy and Fuels ; Volume 35, Issue 4 , 2021 , Pages 3011-3031 ; 08870624 (ISSN) Esfandiarian, A ; Maghsoudian, A ; Shirazi, M ; Tamsilian, Y ; Kord, S ; Sheng, J.J ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    In this paper, the performance of three imidazolium-based ionic liquids (ILs) including 1-hexyl-3-methylimidazolium chloride ([HMIM][Cl] or IL6), 1-octyl-3-methylimidazolium chloride ([OMIM][Cl] or IL8), and 1- dodecyl-3-methylimidazolium chloride ([DMIM][Cl] or IL12) in reducing the interfacial tension (IFT) between crude oil and IL solutions was analyzed for the first time under a wide range of salinities (1000 to 195 476 ppm) at a reservoir temperature of 80 °C. The purpose was to microscopically analyze the occurring phenomenon at the fluid-fluid interface to determine the mechanism leading to oil extraction and to address the existing ambiguities in the literature concerning the... 

    Experimental investigation on the dominating fluid-fluid and rock-fluid interactions during low salinity water flooding in water-wet and oil-wet calcites

    , Article Journal of Petroleum Science and Engineering ; Volume 204 , 2021 ; 09204105 (ISSN) Farhadi, H ; Fatemi, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Low salinity water flooding (LSWF) has the potential to enhance the oil recovery by affecting the fluid-fluid and rock-fluid interactions. Therefore, a systematic investigation on the effect of initial wetting state (water-wet or oil-wet) of pure calcite is conducted to study the importance of these interactions on the effectiveness of LSWF. In the case of initially water-wet cores, more oil recovery efficiency is observed for more saline water cases. To shed light on the possible involved mechanisms, dynamic IFT, dynamic contact angle (CA), oil/brine and rock/brine surfaces zeta potentials, and effluent pH are measured. It is shown that the short-term effect of IFT reduction and long-term... 

    The effect of brine salinity and oil components on dynamic IFT behavior of oil-brine during low salinity water flooding: Diffusion coefficient, EDL establishment time, and IFT reduction rate

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Farhadi, H ; Ayatollahi, S ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Dynamic behavior of fluid-fluid interactions can potentially affect the performance of any enhanced oil recovery (EOR) process including low salinity water flooding. In this work, dynamic interfacial tension (IFT) of crude-oil/brine system is measured in a wide range of salinity of sea water (SW), from 50-time diluted sea water (SW50D) to 2-time concentrated sea water (SW2C). Contrary to the most of published IFT trends in the literature, for the system under investigation here, as the brine salinity increases the crude-oil/brine IFT reduces, which cannot be explained using the existing theories. The lack of a physical model to explain the observed phenomena was the motivation to develop a... 

    Effect of silicate sodium and graphene nanoplatelets on morphology and rheology characteristics of new synthesized preformed particle gel (PPG) for water shut-off treatment

    , Article Journal of Petroleum Science and Engineering ; Volume 204 , 2021 ; 09204105 (ISSN) Paprouschi, A ; Fatemi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Water flooding is one of the most common enhanced oil recovery (EOR) methods, however its application in naturally fractured reservoirs (NFR), suffers from the flow of water in high permeable channels and fractures which leads to low areal and volumetric sweep efficiency. Preformed Particle Gels (PPG), as a subset of gel treatments, can play a vital role in plugging super-permeable zones either near wellbore or deep in the reservoir. Nevertheless the mechanical strength and thermal stability of the designed PPGs, especially under harsh environmental conditions, are subject to further research and development. In spite of recent studies, the effects of nano-materials on the rheological and... 

    Simulation of two-phase flow by injecting water and surfactant into porous media containing oil and investigation of trapped oil areas

    , Article Journal of Petroleum Exploration and Production ; Volume 11, Issue 3 , 2021 , Pages 1353-1362 ; 21900558 (ISSN) Sajadi, S. M ; Jamshidi, S ; Kamalipoor, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Nowadays, as the oil reservoirs reaching their half-life, using enhanced oil recovery methods is more necessary and more common. Simulations are the synthetic process of real systems. In this study, simulation of water and surfactant injection into a porous media containing oil (two-phase) was performed using the computational fluid dynamics method on the image of a real micro-model. Also, the selected anionic surfactant is sodium dodecyl sulfate, which is more effective in sand reservoirs. The effect of using surfactant depends on its concentration. This dependence on concentration in using injection compounds is referred to as critical micelle concentration (CMC). In this study, an... 

    Contribution of water-in-oil emulsion formation and pressure fluctuations to low salinity waterflooding of asphaltic oils: A pore-scale perspective

    , Article Journal of Petroleum Science and Engineering ; Volume 203 , 2021 ; 09204105 (ISSN) Salehpour, M ; Sakhaei, Z ; Salehinezhad, R ; Mahani, H ; Riazi, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    During the low salinity waterflooding (LSWF) of a viscous asphaltic oil reservoir, fluid-fluid interactions have a large influence on the fluid flow, pore-scale events, and thus oil recovery efficiency and behavior. In-situ water-in-oil (W/O) emulsion formation is a consequence of crude oil and brine interfacial activities. Despite the published studies, the pore-scale mechanisms of W/O emulsion formation and the role of injected brine salinity, injection rate, and pore-scale heterogeneity on emulsion formation and stability requires a deeper understanding. To address these, a series of static and dynamic micro-scale experiments were performed. The salinity dependent oil-brine interactions... 

    Pore-doublet computational fluid dynamic simulation of the effects of dynamic contact angle and interfacial tension alterations on the displacement mechanisms of oil by low salinity water

    , Article International Journal of Multiphase Flow ; Volume 143 , 2021 ; 03019322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Using our recently developed model, for the first time in the literature, the effect of fluid/fluid and rock/fluid interactions on the performance of Low Salinity Waterflooding (LSWF, as an Enhanced Oil Recovery process) at pore-doublet scale is investigated. The model is incorporated into OpenFOAM and both the Navier-Stokes equation for oil/water two-phase flow and the advection-diffusion equation for ion transport (at both fluid/fluid and rock/fluid interface) are solved via direct numerical simulation (DNS). The model is validated against imbibition and drainage pore-doublet experiments reported in the literature, and then applied to investigate the sole effect of wettability alteration... 

    Pore-doublet computational fluid dynamic simulation of the effects of dynamic contact angle and interfacial tension alterations on the displacement mechanisms of oil by low salinity water

    , Article International Journal of Multiphase Flow ; Volume 143 , 2021 ; 03019322 (ISSN) Alizadeh, M ; Fatemi, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Using our recently developed model, for the first time in the literature, the effect of fluid/fluid and rock/fluid interactions on the performance of Low Salinity Waterflooding (LSWF, as an Enhanced Oil Recovery process) at pore-doublet scale is investigated. The model is incorporated into OpenFOAM and both the Navier-Stokes equation for oil/water two-phase flow and the advection-diffusion equation for ion transport (at both fluid/fluid and rock/fluid interface) are solved via direct numerical simulation (DNS). The model is validated against imbibition and drainage pore-doublet experiments reported in the literature, and then applied to investigate the sole effect of wettability alteration... 

    Fabrication of a highly efficient new nanocomposite polymer gel for controlling the excess water production in petroleum reservoirs and increasing the performance of enhanced oil recovery processes

    , Article Chinese Journal of Chemical Engineering ; Volume 32 , 2021 , Pages 385-392 ; 10049541 (ISSN) Asadizadeh, S ; Ayatollahi, S ; ZareNezhad, B ; Sharif University of Technology
    Materials China  2021
    Abstract
    A new nanocomposite polymer gel is synthesized for reduction of excess water production in petroleum reservoirs at real operating conditions. This new nanocomposite gel contains SiO2 nanoparticles, partially hydrolyzed polyacrylamide (HPAM) and chromium triacetate. High pressure and high temperature tests using porous carbonate core are carried out to evaluate the effects of nanoparticles on the synthesized polymer gel performance. It is shown that the residual resistance factor ratio of water to oil using the synthesized polymer gel nanocomposite in this work is much higher than that of the ordinary polymer gels. The presented results confirm the high performance of the synthesized... 

    The non-linear effect of oil polarity on the efficiency of low salinity waterflooding: A pore-level investigation

    , Article Journal of Molecular Liquids ; January , 2021 ; 01677322 (ISSN) Golmohammadi, M ; Mohammadi, S ; Mahani, H ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B. V  2021
    Abstract
    Oil polarity is an important property impacting the efficiency of low salinity waterflooding (LSWF). It directly affects fluid/fluid and rock/fluid interactions, controlling the interfacial properties and forces. However, the current findings in the literature on the effect of concentration of polar components on oil recovery by LSWF are contradictory. Therefore, the main objective of this paper is to investigate how the type of non-polar fractions and the concentration of acidic polar oil constituents change the trapped oil saturation at the pore-scale during LSWF. In this regard, we conducted a series of microfluidics LSWF experiments in both secondary and tertiary modes, using clay-free... 

    A mechanistic study of emulsion flooding for mobility control in the presence of fatty acids: Effect of chain length

    , Article Fuel ; Volume 276 , 2020 Alizadeh, S ; Suleymani, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Emulsion flooding is a promising method for enhanced oil recovery (EOR). The static and dynamic behavior of the emulsions is greatly influenced by the nature of the applied surfactant. In this work, the effect of fatty acids, as natural surface-active agents, and their chain length on the emulsion behavior was investigated in both bulk and porous media. A panel of the fatty acids with different chain lengths (6 < C < 18) was applied at constant concentration and pH. Upon the static stability tests, emulsion stability at the optimum value of chain length (C14) was increased by two orders of magnitude. Under the optimal condition, the hydrogen bonding between dissociated and undissociated... 

    Mechanistic study to investigate the effects of different gas injection scenarios on the rate of asphaltene deposition: An experimental approach

    , Article Fuel ; Volume 262 , 2020 Dashti, H ; Zanganeh, P ; Kord, S ; Ayatollahi, S ; Amiri, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Asphaltene deposition during enhanced oil recovery (EOR) processes is one of the most problematic challenges in the petroleum industry, potentially resulting in flow blockage. Our understanding of the deposition mechanism with emphasis on the rate of the asphaltene deposition is still in its infancy and must be developed through a range of experiments and modelling studies. This study aims to investigate the rate of asphaltene deposition through a visual study under different gas injection scenarios. To visualise the asphaltene deposition, a high-pressure setup was designed and constructed, which enables us to record high-quality images of the deposition process over time. Present research...