Loading...
Search for: enzymatic-degradation
0.011 seconds

    In situ forming interpenetrating hydrogels of hyaluronic acid hybridized with iron oxide nanoparticles

    , Article Biomaterials Science ; Volume 3, Issue 11 , Aug , 2015 , Pages 1466-1474 ; 20474830 (ISSN) Kheirabadi, M ; Shi, L ; Bagheri, R ; Kabiri, K ; Hilborn, J ; Ossipov, D. A ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    Four derivatives of hyaluronic acid (HA) bearing thiol (HA-SH), hydrazide (HA-hy), 2-dithiopyridyl (HA-SSPy), and aldehyde groups (HA-al) respectively were synthesized. Thiol and 2-dithiopyridyl as well as hydrazide and aldehyde make up two chemically orthogonal pairs of chemo-selective functionalities that allow in situ formation of interpenetrating (IPN) disulfide and hydrazone networks simultaneously upon the mixing of the above derivatives at once. The formation of IPN was demonstrated by comparing it with the formulations of the same total HA concentration but lacking one of the reactive components. The hydrogel composed of all four components was characterized by a larger elastic... 

    Enzymatic and soil burial degradation of corn starch/glycerol/sodium montmorillonite nanocomposites

    , Article Polymers from Renewable Resources ; Volume 11, Issue 1-2 , 2020 , Pages 15-29 Ostadi, H ; Gilak Hakimabadi, S ; Nabavi, F ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In this study, effects of glycerol (10, 20, and 30 wt%) and Sodium Montmorillonite (Na-MMT) (0%, 2.5%, and 5%) contents on the degradation of corn starch polymers were investigated. Films were prepared by casting corn starch solution using a modified method to enhance the nanoclay distribution. Biodegradability studies were performed by enzymatic and burial tests using pristine and enriched soils. The biodegradability of samples in pristine soil was faster, and all samples were fully degraded in 6 months. The effect of nanoparticles on the mass reduction in degradation was more pronounced than that of glycerol. In all glycerol concentrations, Na-MMT addition increased tensile strength. FTIR... 

    Fabrication and characterization of an injectable reinforced composite scaffold for cartilage tissue engineering: An in vitro study

    , Article Biomedical Materials (Bristol) ; Volume 16, Issue 4 , 2021 ; 17486041 (ISSN) Khozaei Ravari, M ; Mashayekhan, S ; Zarei, F ; Sayyahpour, F. A ; Taghiyar, L ; Eslaminejad, M. B ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    There are limitations in current medications of articular cartilage injuries. Although injectable bioactive hydrogels are promising options, they have decreased biomechanical performance. Researchers should consider many factors when providing solutions to overcome these challenges. In this study, we created an injectable composite hydrogel from chitosan and human acellular cartilage extracellular matrix (ECM) particles. In order to enhance its mechanical properties, we reinforced this hydrogel with microporous microspheres composed of the same materials as the structural building blocks of the scaffold. Articular cartilage from human donors was decellularized by a combination of physical,...