Loading...
Search for: exhaust-manifolds
0.004 seconds

    Fault effect analysis of the exhaust manifold leakage for a turbocharged spark ignition engine

    , Article Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering ; Vol. 228, issue. 8 , 2014 , pp. 970-984 ; ISSN: 09544070 Salehi, R ; Vossoughi, G ; Alasty, A ; Sharif University of Technology
    Abstract
    Fault monitoring in internal-combustion engines is crucial for keeping the vehicle performance within the acceptable standards of emission levels and drivers' demands. This paper analyses how a vehicle's performance and engine variables are affected by a leakage fault in the exhaust manifold. The threshold leakage that causes the vehicle to exceed the emission standards is determined for a class M1 vehicle tested on a chassis dynamometer over the New European Driving Cycle. It is shown that, when a leakage of 6 mm diameter on the exhaust manifold is introduced, the vehicle emissions exceed those specified in the European 2013 on-board diagnostics standard. In addition, the effects of the... 

    On-line fault detection and isolation (FDI) for the exhaust path of a turbocharged SI engine

    , Article ASME 2013 Dynamic Systems and Control Conference, DSCC 2013 ; Vol. 1 , 2013 ; ISBN: 9780791856123 Salehi, R ; Shahbakhti M ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    Abstract
    Detection and isolation of faults in the exhaust gas path of a turbocharged spark ignition (SI) engine is an essential part of the engine control unit (ECU) strategies to minimize exhaust emission and ensure safe operation of a turbocharger. This paper proposes a novel physics-based strategy to detect and isolate an exhaust manifold leakage and a closed-stuck wastegate fault. The strategy is based on a globally optimal parameter estimation algorithm which detects an effective hole area in the exhaust manifold. The estimation algorithm requires prediction of the exhaust manifold's input and output flows. The input flow is predicted by a nonlinear Luenberger observer which is analytically... 

    On-line fault detection and isolation (FDI) for the exhaust path of a turbocharged SI engine

    , Article ASME 2013 Dynamic Systems and Control Conference, DSCC 2013 ; Volume 1 , 2013 ; 9780791856123 (ISBN) Salehi, R ; Shahbakhti, M ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    2013
    Abstract
    Detection and isolation of faults in the exhaust gas path of a turbocharged spark ignition (SI) engine is an essential part of the engine control unit (ECU) strategies to minimize exhaust emission and ensure safe operation of a turbocharger. This paper proposes a novel physics-based strategy to detect and isolate an exhaust manifold leakage and a closed-stuck wastegate fault. The strategy is based on a globally optimal parameter estimation algorithm which detects an effective hole area in the exhaust manifold. The estimation algorithm requires prediction of the exhaust manifold's input and output flows. The input flow is predicted by a nonlinear Luenberger observer which is analytically... 

    Sliding Mode Observers to Detect and Isolate Faults in a Turbocharged Gasoline Engine

    , Article SAE International Journal of Engines ; Volume 8, Issue 2 , April , 2015 , Pages 399-410 ; 19463936 (ISSN) Salehi, R ; Alasty, A ; Vossoughi, G. R ; Sharif University of Technology
    SAE International  2015
    Abstract
    This paper presents a novel model-based algorithm which is able to detect and isolate major faults assigned to the gas exchange path of a gasoline engine both in the intake and exhaust sides. The diagnostics system is developed for detection and isolation of these faults: air leakage fault between the compressor and the air throttle, exhaust manifold pressure sensor fault, wastegate stuck-closed fault and wastegate stuck-open fault. Sliding mode observers (SMOs) are the core detection algorithms utilized in this work. A first order SMO is designed to estimate the turbocharger rotational dynamics. The wastegate displacement dynamics coupled to the exhaust manifold pressure dynamics is... 

    Detection and isolation of faults in the exhaust path of turbocharged automotive engines

    , Article International Journal of Automotive Technology ; Volume 16, Issue 1 , 2015 , Pages 127-138 ; 12299138 (ISSN) Salehi, R ; Alasty, A ; Shahbakhti, M ; Vossoughi, G ; Sharif University of Technology
    Abstract
    Detection and isolation of faults in the exhaust gas path of a turbocharged spark ignition (SI) engine is an essential part of the engine control unit (ECU) strategies to minimize exhaust emission and ensure safe operation of a turbocharger. This paper proposes a novel model-based strategy to detect and isolate an exhaust manifold leakage and a stuckclosed wastegate fault. The strategy is based on a globally optimal parameter estimation algorithm which detects a virtual hole area in the exhaust manifold. The estimation algorithm requires observation of the exhaust manifold’s input and output flows. The input flow is estimated by a nonlinear Luenberger observer which is analytically shown to... 

    Observer Design for Exhaust Manifold Pressure in Turbocharged SI Engines

    , M.Sc. Thesis Sharif University of Technology Hassani Monir, Vahid (Author) ; Alasty, Aria (Supervisor) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    Nowadays, fuel optimum used in engines is an important matter. To achieve this aim, we need to tune engine. The big companies have paid attention to these cases. Because of it, there are strict standard in the world and in other side the internal combustion engine is very common.
    In the internal combustion engine after cylinder, the gas inter to an encasement which is called exhaust manifold. In the other hand, exhaust manifold is in upstairs of turbine and waste-gate in turbocharged SI engines. To control fuel used and descries the amount of emissions, exhaust manifold pressure is very important. In the other hand, monitoring of exhaust manifold pressure can use for fault detection of... 

    Design of an Absorption Chiller for Light Vehicles

    , M.Sc. Thesis Sharif University of Technology Mohammadi Manesh, Mehdi (Author) ; Behshad Shafiee, Mohammad (Supervisor)
    Abstract
    Reducing fossil fuels and increasing urban air pollution, has made the automotive industry to reduce the fuel consumption of their engines by various approaches. Removing the compressor of air conditioning system by replacing the absorption chiller instead of inverse rankin cycle is a shortcut to reduce the fuel consumption which at the same time reduces costs of using air conditioning system for occupants. Design of a 3 kW lithium bromide-water absorbent chiller has verified based on environmental conditions and car space limitations and using the combustion products as the heat source of system. K4M engine of L90 sedan Car as an internal combustion engine sample’s exhaust manifold has been...