Loading...
Search for: expansion
0.012 seconds
Total 355 records

    An enhanced MILP model for multistage reliability-constrained distribution network expansion planning

    , Article IEEE Transactions on Power Systems ; Volume 37, Issue 1 , 2022 , Pages 118-131 ; 08858950 (ISSN) Jooshaki, M ; Abbaspour, A ; Fotuhi Firuzabad, M ; Muñoz Delgado, G ; Contreras, J ; Lehtonen, M ; Arroyo, J. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Reliability is an essential factor in distribution networkt expansion planning. However, standard distribution reliability assessment techniques rely on quantifying the impact of a pre-specified set of events on service continuity through the simulation of component outages, one at a time. Due to such a simulation-based nature, the incorporation of reliability into distribution network expansion planning has customarily required the application of heuristic and metaheuristic approaches. Recently, alternative mixed-integer linear programming (MILP) models have been proposed for distribution network expansion planning considering reliability. Nonetheless, such models suffer from either low... 

    Probabilistic CFD analysis on the flow field and performance of the FDA centrifugal blood pump

    , Article Applied Mathematical Modelling ; Volume 109 , 2022 , Pages 555-577 ; 0307904X (ISSN) Mohammadi, R ; Karimi, M. S ; Raisee, M ; Sharbatdar, M ; Sharif University of Technology
    Elsevier Inc  2022
    Abstract
    The present study is set out to systematically investigate the combined impact of operational, geometrical, and model uncertainties on the hemodynamics and performance characteristics in the U.S. Food and Drug Administration (FDA) benchmark centrifugal blood pump. Non-intrusive Polynomial Chaos Expansion (NIPCE) has been utilized to propagate the uncertainty of 12 random input variables in the flow field and the performance characteristics of the blood pump at three working conditions. The global sensitivity of the Quantities of Interest (QoI) to the uncertain input parameters was measured through the Sobol’ indices. The Multiple Reference Frames (MRF) approach and the SST k−ω turbulence... 

    Generalized equivalent circuit model for analysis of graphene/metal-based plasmonic metasurfaces using Floquet expansion

    , Article Optics Express ; Volume 30, Issue 20 , 2022 , Pages 35486-35499 ; 10944087 (ISSN) Pasdari Kia, M ; Memarian, M ; Khavasi, A ; Sharif University of Technology
    Optica Publishing Group (formerly OSA)  2022
    Abstract
    Due to the wide range of applications of metal/graphene-based plasmonic metasurfaces (sensors, absorbers, polarizers), it has become essential to provide an analytical method for modeling these structures. An analytical solution simplified into a circuit model, in addition to greatly reducing the simulation time, can become an essential tool for designing and predicting the behaviors of these structures. This paper presents a high-precision equivalent circuit model to study these structures in one-dimensional and two-dimensional periodic arrays. In the developed model, metallic patches similar to graphene patches are modeled as surface conductivity and with the help of current modes induced... 

    Reliability-Based expansion planning studies of active distribution networks with multiagents

    , Article IEEE Transactions on Smart Grid ; Volume 13, Issue 6 , 2022 , Pages 4610-4623 ; 19493053 (ISSN) Kabirifar, M ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Pourghaderi, N ; Shahidehpour, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this paper, a multi-agent framework is proposed to address the expansion planning problem in a restructured active distribution network. In this framework, the objective and techno-economic constraints of participating agents are addressed in the expansion planning of power network and DER assets as well as the network and DERs optimal operation management. The agents include distributed generator owners and load aggregators which participate along with the distribution network operator (DNO) in the active distribution network planning. The proposed framework is formulated as a bi-level optimization problem with multi-lower levels in which the DNO optimizes the network expansion planning... 

    Harnessing power system flexibility under multiple uncertainties

    , Article IET Generation, Transmission and Distribution ; Volume 16, Issue 14 , 2022 , Pages 2878-2890 ; 17518687 (ISSN) Mazaheri, H ; Saber, H ; Fattaheian Dehkordi, S ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Lehtonen, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Increasing the intermittent outputs of renewable energy sources (RESs) has forced planners to define a new concept named flexibility. In this regard, some short- and long-term solutions, such as transmission expansion planning (TEP) and energy storage systems (ESSs) have been suggested to improve the flexibility amount. A proper optimization procedure is required to choose an optimal solution to improve flexibility. Therefore, a mixed-integer linear programming (MILP) direct-optimization TEP versus ESSs co-planning model is presented in this paper to enhance power system flexibility. In doing so, a novel RES-BESS-based grid-scale system flexibility metric is proposed to investigate the... 

    A Bi-Level framework for expansion planning in active power distribution networks

    , Article IEEE Transactions on Power Systems ; Volume 37, Issue 4 , 2022 , Pages 2639-2654 ; 08858950 (ISSN) Kabirifar, M ; Fotuhi Firuzabad, M ; Moeini Aghtaie, M ; Pourghaderi, N ; Dehghanian, P ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    This paper presents a new framework for multistage expansion planning in active power distribution networks, in which the distribution system operator (DSO) considers active network management by clearing the local energy market at the distribution level. The proposed model is formulated as a bi-level optimization problem, where the upper level minimizes the net present value of the total costs imposed to DSO associated with the investment and maintenance of the network assets as well as the network operation, while the lower level on clearing the local energy market captures the participation of distributed energy resource (DER) owners and demand aggregators to maximize the social welfare.... 

    Heat and electricity supply chain expansion planning under the umbrella of energy hub: A case study of Iran

    , Article Scientia Iranica ; Volume 29, Issue 4 D , 2022 , Pages 1983-2006 ; 10263098 (ISSN) Sadeghi, H ; Rashidinejad, M ; Moeini Aghtaie, M ; Abdollahi, A ; Sharif University of Technology
    Sharif University of Technology  2022
    Abstract
    Reinforcing the correlation between Gas and Electricity Systems (G&ESs) susceptible to diverse factors ranging from anthropogenic climate change to the advent of new conversion/generation technologies has remarkably brought into focus the co-expansion of G&ESs using a new concept so-called Energy Hub (EH) as well as the potential of storage systems. To assess the effectiveness of EH approach and the role of storages in the coordinated plans of G&ES, this study proposes a comprehensive EH-based planning model for co-expansion of G&ES supply chains with respect to the role of Gas Storage Systems (GSSs). As a Mixed-Integer Linear Programming (MILP) problem, the model is applied to a real... 

    Robust coordinated distribution system planning considering transactive DSO's market

    , Article IEEE Transactions on Power Systems ; 2022 , Pages 1-11 ; 08858950 (ISSN) Kabiri-Renani, Y ; Fotuhi Firuzabad, M ; Shahidehpour, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    In this paper, a robust distribution system expansion planning (DSP) approach is presented to supply the load growth locally and move toward nearly zero energy local distribution areas (LDAs). In the proposed approach, a distribution system operator (DSO) is responsible for secure and optimum operation of LDAs. Therefore, investors on distribution system upgrades use this approach to maximize the profit on investments by determining the installation year of new distribution feeders and energy resources, distributed energy resource (DER) placements and sizes considered by corresponding DSOs. The accurate AC power flow solution is used and mathematical methods are developed to model the DSP as... 

    A modified unsteady-nonlinear aeroelastic model for flapping wings

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; 2022 ; 09544100 (ISSN) Pourtakdoust, S. H ; Zare, H ; Bighashdel, A ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    A novel integrated aeroelastic model of flapping wings (FWs) undergoing a prescribed rigid body motion is presented. In this respect, the FW nonlinear structural dynamics is enhanced via a newly proposed modification of implicit condensation and expansion (MICE) method that better considers the structural nonlinear effects. In addition, the unsteady aerodynamic model is also an extension of the widely utilized modified strip theory (MST) in which the flexibility effects are accounted for (MST-Flex). The integrated utility of the proposed generalized MICE and MST-Flex is demonstrated to be more realistic for elastic FW flight simulation applications. The prescribed rigid body motion is... 

    On the structure of unsteady korteweg-de vries model arising in shallow water

    , Article Journal of Ocean Engineering and Science ; 2022 ; 24680133 (ISSN) Tariq, K. U ; Inc, M ; Pashrashid, A ; Zubair, M ; Akinyemi, L ; Sharif University of Technology
    Shanghai Jiaotong University  2022
    Abstract
    In this article, the modified Kudryashov approach and ([Formula presented])-expansion approach are utilized to extract some new analytical solutions to the unsteady Korteweg-de Vries equation. In nonlinear sciences, this equation is very important. As a result, a variety of new exact solutions are acquired for the aforementioned nonlinear model. Moreover, the two dimensional, three dimensional, and contour shapes are visualized with the aid of latest scientific tools. We found four forms of explicit solutions such as the hyperbolic, trigonometric, exponential, and rational function solutions. It has been demonstrated that the proposed techniques are highly efficient and practical for the... 

    An enhanced MILP model for multistage reliability-constrained distribution network expansion planning

    , Article IEEE Transactions on Power Systems ; Volume 37, Issue 1 , 2022 , Pages 118-131 ; 08858950 (ISSN) Jooshaki, M ; Abbaspour, A ; Fotuhi Firuzabad, M ; Muñoz Delgado, G ; Contreras, J ; Lehtonen, M ; Arroyo, J. M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2022
    Abstract
    Reliability is an essential factor in distribution networkt expansion planning. However, standard distribution reliability assessment techniques rely on quantifying the impact of a pre-specified set of events on service continuity through the simulation of component outages, one at a time. Due to such a simulation-based nature, the incorporation of reliability into distribution network expansion planning has customarily required the application of heuristic and metaheuristic approaches. Recently, alternative mixed-integer linear programming (MILP) models have been proposed for distribution network expansion planning considering reliability. Nonetheless, such models suffer from either low... 

    A linearized transmission expansion planning model under N − 1 criterion for enhancing grid-scale system flexibility via compressed air energy storage integration

    , Article IET Generation, Transmission and Distribution ; Volume 16, Issue 2 , 2022 , Pages 208-218 ; 17518687 (ISSN) Mazaheri, H ; Moeini Aghtaie, M ; Fotuhi Firuzabad, M ; Dehghanian, P ; Khoshjahan, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The concept of flexibility is defined as the power systems’ ability to effectively respond to changes in power generation and demand profiles to maintain the supply–demand balance. However, the inherent flexibility margins required for successful operation have been recently challenged by the unprecedented arrival of uncertainties, driven by constantly changing demand, failure of conventional units, and the intermittent outputs of renewable energy sources (RES). Tackling these challenges, energy storage systems (ESS) as one important player of the new power grids can enhance the system flexibility. It, therefore, calls for an efficient planning procedure to ensure flexibility margins by... 

    Critical voltage, thermal buckling and frequency characteristics of a thermally affected GPL reinforced composite microdisk covered with piezoelectric actuator

    , Article Mechanics Based Design of Structures and Machines ; Volume 50, Issue 4 , 2022 , Pages 1331-1353 ; 15397734 (ISSN) Jermsittiparsert, K ; Ghabussi, A ; Forooghi, A ; Shavalipour, A ; Habibi, M ; won Jung, D ; Safa, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Due to the remarkable progress in the field of the manufacturing process, smart composites have become the desired target for high-tech engineering applications. Accordingly, for the first time, thermal buckling, critical voltage and vibration response of a thermally affected graphene nanoplatelet reinforced composite (GPLRC) microdisk in the thermal environment are explored with the aid of generalized differential quadrature method (GDQM). Also, the current microstructure is coupled with a piezoelectric actuator (PIAC). The extended form of Halpin-Tsai micromechanics is used to acquire the elasticity of the structure, whereas, the variation of thermal expansion, Poisson’s ratio, and density... 

    Effect of polypropylene fibers and cement on the strength improvement of subgrade lying on expansive soil

    , Article Iranian Journal of Science and Technology - Transactions of Civil Engineering ; Volume 46, Issue 1 , 2022 , Pages 343-352 ; 22286160 (ISSN) Khan, S. Z ; Rehman, Z ; Khan, A. H ; Qamar, S ; Haider, F ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    The current study revealed the effectiveness of polypropylene (PP) fibers and cement to enhance the strength of black cotton soil. PP fibers and cement with different concentrations were mixed with black cotton soil. The strength of PP fiber and cement-based soil samples was measured in terms of unconfined compressive strength (UCS) and California Bearing ratio (CBR). Specimens for UCS and CBR tests were prepared at 2%, 4%, 6% and 8% of cement (by dry weight of soil) and seven percentages of polypropylene fibers i.e. 0.0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5% and 0.6% (by dry weight of soil). Fourier transform infrared (FTIR) analysis confirmed the presence of polypropylene and cement contents in... 

    System dynamics to assess the effectiveness of restoration scenarios for the Urmia Lake: A prey-predator approach for the human-environment uncertain interactions

    , Article Journal of Hydrology ; Volume 593 , 2021 ; 00221694 (ISSN) Barhagh, S. E ; Zarghami, M ; Alizade Govarchin Ghale, Y ; Shahbazbegian, M. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    In recent decades, population growth, agricultural development and climate change have caused environmental problems in the world, especially in the arid and semi-arid regions such as Iran. Urmia Lake, one of the unique biosphere reserves of the world, has suffered from these problems in the last 20 years. Although many studies conducted to the negative impacts of human-induced activities, especially agricultural expansion on the lake, few studies focused on providing restoration plans for that. This study uses a system dynamics method for modelling the restorations scenarios of Urmia Lake based on the prey-predator approach. This method is helpful to simplify the complicated feedbacks and... 

    Unsaturated thermal consolidation around a heat source

    , Article Computers and Geotechnics ; Volume 134 , 2021 ; 0266352X (ISSN) Cherati, D. Y ; Ghasemi Fare, O ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Thermal loadings in saturated (two-phase) clays induce excess pore water pressure due to the difference in the thermal expansion coefficient of the pore volume and the pore water. The gradual dissipation of the excess pore water pressure causes thermal volume reduction which is known as thermal consolidation. However, thermal consolidation in a three-phase soil system such as unsaturated soil is more sophisticated. In this paper, an analytical model for thermal consolidation around a heat source embedded in unsaturated clay or in calyey soils containing two immiscible fluids is developed based on the effective stress concept. Governing equations, including energy, mass, and momentum balance... 

    Investigation of the effect of adding nano-encapsulated phase change material to water in natural convection inside a rectangular cavity

    , Article Journal of Energy Storage ; Volume 40 , 2021 ; 2352152X (ISSN) Golab, E ; Goudarzi, S ; Kazemi Varnamkhasti, H ; Amigh, H ; Ghaemi, F ; Baleanu, D ; Karimipour, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The present simulation aims to investigate adding NEPCM nanoparticles to water in the natural convection inside a cavity by using FVM method and SIMPLE algorithm. Nano-encapsulated phase change material (NEPCM) consists of a shell and core with phase change property. The NEPCM particles in base fluid have the ability to transfer heat by absorbing and dissipating heat in the liquid-solid phase change state. In this study, the energy wall phenomenon due to the phase change of NEPCM core has appeared that the whose energy transfer strength is proportional to the latent heat of NEPCM core and the thickness of the energy wall. Moreover, the relationship between the energy wall and the heat... 

    Multi-way sparsest cut problem on trees with a control on the number of parts and outliers

    , Article Discrete Applied Mathematics ; Volume 289 , 2021 , Pages 281-291 ; 0166218X (ISSN) Javadi, R ; Ashkboos, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Given a graph, the sparsest cut problem asks for a subset of vertices whose edge expansion (the normalized cut given by the subset) is minimized. In this paper, we study a generalization of this problem seeking for k disjoint subsets of vertices (clusters) whose edge expansions are small and furthermore, the number of vertices that remained in the exterior of the subsets (outliers) is also small. It is proved in Daneshgar et al. (2012) that this problem is NP-hard for trees. Here, we prove that it can be solved in polynomial time for all weighted trees, provided that the search space is restricted to subsets inducing connected subgraphs. The additional constraint has justifications in... 

    Effect of polypropylene fibers and cement on the strength improvement of subgrade lying on expansive soil

    , Article Iranian Journal of Science and Technology - Transactions of Civil Engineering ; 2021 ; 22286160 (ISSN) Khan, S. Z ; Rehman, Z ; Khan, A. H ; Qamar, S ; Haider, F ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    The current study revealed the effectiveness of polypropylene (PP) fibers and cement to enhance the strength of black cotton soil. PP fibers and cement with different concentrations were mixed with black cotton soil. The strength of PP fiber and cement-based soil samples was measured in terms of unconfined compressive strength (UCS) and California Bearing ratio (CBR). Specimens for UCS and CBR tests were prepared at 2%, 4%, 6% and 8% of cement (by dry weight of soil) and seven percentages of polypropylene fibers i.e. 0.0%, 0.1%, 0.2%, 0.3%, 0.4%, 0.5% and 0.6% (by dry weight of soil). Fourier transform infrared (FTIR) analysis confirmed the presence of polypropylene and cement contents in... 

    Development of SD-HACNEM neutron noise simulator based on high order nodal expansion method for rectangular geometry

    , Article Annals of Nuclear Energy ; Volume 162 , 2021 ; 03064549 (ISSN) Kolali, A ; Vosoughi, J ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, the SD-HACNEM (Sharif Dynamic - High order Average Current Nodal Expansion Method) neutron noise simulator in two energy groups using a second-order flux expansion method for two-dimensional rectangular X Y-geometry has been developed. In the first step, the calculations were performed for the steady state and results of ACNEM (Average Current Nodal Expansion Method) and HACNEM (High order Average Current Nodal Expansion Method) were examined and compared. To solve the problem, the power iteration algorithm has been used to calculate the distribution of neutron flux and neutron multiplication factor by considering the coarse-mesh (each fuel assembly one node). To validate the...