Loading...
Search for: experimental
0.021 seconds
Total 1543 records

    The effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on the cognitive and motor functions in rodents: A systematic review and meta-analysis

    , Article Neuroscience and Biobehavioral Reviews ; Volume 140 , 2022 ; 01497634 (ISSN) Narmashiri, A ; Abbaszadeh, M ; Ghazizadeh, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Memory and motor deficits are commonly identified in Parkinson's disease (PD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is transformed to MPP+ via monoamine oxidase B (MAOB), which causes oxidative stress and destroys dopaminergic (DA) neurons in substantia nigra pars compacta (SNc) and is widely used to create animal models of PD. However, to-date, a comprehensive analysis of the MPTP effects on various aspects of PD does not exist. Here, we provide a systematic review and meta-analysis on the MPTP effects on memory and motor functions by analyzing 51 studies on more than one thousand animals mainly including rats and mice. The results showed that in addition to motor functions... 

    Experimental and numerical investigation of thermal enhancement methods on rammed-earth materials

    , Article Solar Energy ; Volume 244 , 2022 , Pages 474-483 ; 0038092X (ISSN) Toufigh, V ; Samadianfard, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The renewed attention paid to rammed earth materials in recent decades is related to their sustainability, high thermo-buffering capacity and relatively low cost. The energy performance of rammed earth materials can be enhanced with stabilization. However, some of thermal enhancement methods have destructive side-effects. In the current study, the effect of three different methods was investigated on thirteen different alternatives of rammed earth materials to improve energy efficiency of buildings. These methods include using phase change materials, cementitious admixtures and external insulators. Thermo-dynamic parameters such as time lag, thermal conductivity and heat flux were measured... 

    Novel experimental evidence on the impact of surface carboxylic acid site density on the role of individual ions in the electrical behavior of crude oil/water

    , Article Journal of Molecular Liquids ; Volume 362 , 2022 ; 01677322 (ISSN) Farhadi, H ; Mahmoodpour, S ; Ayatollahi, S ; Fatemi, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Perceiving the electrical behavior of the rock/brine and the crude oil/brine interfaces gives insight into the performance of engineered waterflooding. Compared to the rock surface, few studies have attempted to comprehend the complex behavior of the crude-oil surface electrical behavior. To reveal the impact of each ion on the surface charge of crude oil, the zeta potential of crude oil/single-salt brines (including NaCl, CaCl2, MgCl2, Na2SO4, and NaHCO3) was measured in a wide range of salinity. Then, the counterpart interfacial tension (IFT) was measured to determine the capability of each brine in bringing carboxylic acid groups from crude-oil bulk (COOH) to crude oil/brine interface... 

    Supercritical carbon dioxide utilization in drug delivery: Experimental study and modeling of paracetamol solubility

    , Article European Journal of Pharmaceutical Sciences ; Volume 177 , 2022 ; 09280987 (ISSN) Bagheri, H ; Notej, B ; Shahsavari, S ; Hashemipour, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In the present study, the solubility of paracetamol in supercritical CO2 is measured at temperatures between 311 and 358 K and pressures between 95 and 265 bar. It was shown that the solubility of paracetamol through a static solubility measurement method was between 0.3055 × 10−6 to 16.3582 × 10−6 based on mole fraction. The obtained experimental solubility data revealed the direct effect of pressure on the paracetamol experimental data, while the temperature has a dual effect of both increasing and decreasing effect considering the shifting point known as crossover pressure which was measured to be around 110 bar for paracetamol. Besides, two theoretical approaches were applied to predict... 

    Experimental evaluation of a solar-driven adsorption desalination system using solid adsorbent of silica gel and hydrogel

    , Article Environmental Science and Pollution Research ; Volume 29, Issue 47 , 2022 , Pages 71217-71231 ; 09441344 (ISSN) Zarei Saleh Abad, M ; Behshad Shafii, M ; Ebrahimpour, B ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Nowadays, the world is facing a shortage of fresh water. Utilizing adsorbent materials to adsorb air moisture is a suitable method for producing freshwater, especially combining the adsorption desalination system with solar energy devices such as solar collectors. The low temperature of solar collectors has caused some water to remain in the adsorbents in the desorption process and has reduced the possibility of using these systems. In this research, for the first time, an evacuated tube collector (ETC) is used as an adsorbent bed so that the temperature of the desorption process reaches higher values and as a result, more fresh water is expected to produced. In this study, two adsorption... 

    Dynamics of electrostatic interaction and electrodiffusion in a charged thin film with nanoscale physicochemical heterogeneity: Implications for low-salinity waterflooding

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Volume 650 , 2022 ; 09277757 (ISSN) Pourakaberian, A ; Mahani, H ; Niasar, V ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The slow kinetics of wettability alteration toward a more water-wetting state by low-salinity waterflooding (LSWF) in oil-brine-rock (OBR) systems is conjectured to be pertinent to the electrokinetic phenomena in the thin brine film. We hypothesize that the nanoscale physicochemical heterogeneities such as surface roughness and surface charge heterogeneity at the rock/brine interface control further the dynamics of electrodiffusion and electrostatic disjoining pressure (Πel), thus the time-scale and the magnitude of the low salinity effect (LSE). In this regard, film-scale computational fluid dynamics (CFD) simulations were performed. The coupled Poisson-Nernst-Planck (PNP) equations were... 

    Adsorption properties of halloysite modified acrylamide/quince seeds-based hydrogel: Experimental and DFT investigation

    , Article Journal of Polymers and the Environment ; Volume 30, Issue 11 , 2022 , Pages 4637-4650 ; 15662543 (ISSN) Abdollahizad, G ; Mirzaee Valadi, F ; Akbarzadeh, E ; Gholami, M. R ; Sharif University of Technology
    Springer  2022
    Abstract
    In this work Halloysite nanotubes were used to synthesis a series of modified acrylamide/Quince seeds-based hydrogels (Poly (AAm-co-QS)/Haln). The as-prepared Poly (AAm-co-QS)/Haln hydrogels displayed improved performance as adsorbent in elimination of methylene blue (MB) from aqueous solution. The structures of the prepared Poly (AAm-co-QS)/Haln hydrogels were identified by XRD, FT-IR, FE-SEM, BET, TGA and EDX. Effect of pH value on the swelling behavior and dye adsorption performance of as-prepared hydrogels was explored. The adsorption MB results suggested that the adsorption kinetics fitted the pseudo-second-order model. The adsorption experiments at various pH condition indicated that... 

    Experimental evaluation of the effect of boulders and fines in biodegradable organic materials on the improvement of solar stills

    , Article Solar Energy ; Volume 247 , 2022 , Pages 453-467 ; 0038092X (ISSN) Ebrahimpour, B ; Behshad Shafii, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this research, for the first time, the effect of primary particles (boulders) and secondary particles (fines) in organic mixtures of coffee, black walnut hull, madder, and tea (which are cheap, abundant, and biodegradable) on the improvement of solar stills' daily efficiency is evaluated as an alternative to metal-based nanofluids. A laboratory still simulator is utilised under laboratory conditions to measure the organic mixture's behaviour accurately. Furthermore, the effect of the concentration of organic mixtures and the particle size of organic materials are investigated, as well as the effect of boulders and fines, independently. In addition, two identical solar still systems are... 

    Experimental and numerical investigation of hydrodynamic performance of a new surface piercing propeller family

    , Article Ocean Engineering ; Volume 264 , 2022 ; 00298018 (ISSN) Seif, M. S ; Teimouri, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Today, passenger and racing boats increasingly utilize surface-piercing propellers. This type of propeller operates in two distinct phases of water and air simultaneously. As a result, this propeller type has additional characteristics that must be investigated separately from conventional propellers. A new family of surface piercing propellers was investigated using experimental and numerical methods. The family consisted of five propeller models with varying geometric features operating at an immersion ratio of 0.7. Experiments were conducted in the Sharif University of Technology's hydrodynamic group's cavitation tunnel. Additionally, using Star-CCM + software, the numerical simulation... 

    An experimental investigation into the mechanical performance and microstructure of cementitious mortars containing recycled waste materials subjected to various environments

    , Article Journal of Building Engineering ; Volume 61 , 2022 ; 23527102 (ISSN) Mohseni pour asl, J ; Gholhaki, M ; Sharbatdar, M ; Pachideh, G ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    This paper deals with an experimental investigation into the mechanical performance and microstructure characteristics of the cementitious mortars containing recycled waste materials subjected to acidic, neutral and alkaline environments. The recycled waste materials include glass, eggshell, iron and rubber powder in various amounts, namely 7, 14 and 21% by volume, as the replacement for ordinary Portland cement (OPC). In this respect, to examine the mechanical performance of the specimens, the compressive, tensile and bending strength tests as well as water absorption test were carried out at the ages of 7, 28 and 90 days. Moreover, to study the microstructure of the specimens, the scanning... 

    Numerical and experimental study on dynamic responsemitigation of tension leg platform using tuned mass damper

    , Article Journal of Ship Research ; Volume 66, Issue 4 , 2022 , Pages 265-276 ; 00224502 (ISSN) Tabeshpour, M. R ; Nikmehr, L ; Sharif University of Technology
    Society of Naval Architects and Marine Engineers  2022
    Abstract
    Responseamplitudemitigationof theoffshorestructures like tensionlegplatform(TLP) is important since these structures are always exposed to environmental loads such as waves, andin thecaseofTLP, reduction in responseamplitudeofplatformcauses reduction in stress range in tendons; thiswould increase the fatigue life of tendons, and therefore, increases the structural safety. Also providing stable conditions for machinery and crew increases the efficiency and functionality of the platform. This article thus aims to investigate the possibility and effectiveness of applying tuned mass damper (TMD) as a passive structural control systemto suppress the surgemotion of TLP that is exposed to wave... 

    Unified modeling and experimental realization of electrical and thermal percolation in polymer composites

    , Article Applied Physics Reviews ; Volume 9, Issue 4 , 2022 ; 19319401 (ISSN) Sarikhani, N ; Arabshahi, Z. S ; Saberi, A. A ; Moshfegh, A. Z ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Correlations between electrical and thermal conduction in polymer composites are blurred due to the complex contribution of charge and heat carriers at the nanoscale junctions of filler particles. Conflicting reports on the lack or existence of thermal percolation in polymer composites have made it the subject of great controversy for decades. Here, we develop a generalized percolation framework that describes both electrical and thermal conductivity within a remarkably wide range of filler-to-matrix conductivity ratios (Y f / Y m), covering 20 orders of magnitude. Our unified theory provides a genuine classification of electrical conductivity with typical Y f / Y m ≥ 10 10 as... 

    Experimental investigation of shock-buffet criteria on a pitching airfoil

    , Article Chinese Journal of Aeronautics ; Volume 35, Issue 7 , 2022 , Pages 179-191 ; 10009361 (ISSN) Masdari, M ; Zeinalzadeh, A ; Abdi, M. A ; Soltani, M. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    An experimental investigation of the shock-buffet phenomenon subject to unsteady pitching supercritical airfoil around its quarter chord has been conducted in a transonic wind tunnel. The model was equipped with pressure taps connected to the fast response pressure-transducers. Measurements were conducted at different free-stream Mach number from 0.61 to 0.76. The principle goal of this investigation was to experimentally discuss the shock-buffet criterion over a SC(2)-0410 supercritical pitching related to the hysteresis loops of total drag and trailing edge pressure, the behaviour of the shock wave foot location, the pressure distribution over the upper surface, and by implementing the... 

    Influence of pulsed direct current on the growth rate of intermetallic phases in the Ni–Al system during reactive spark plasma sintering

    , Article Scripta Materialia ; Volume 216 , 2022 ; 13596462 (ISSN) Abedi, M ; Asadi, A ; Sovizi, S ; Moskovskikh, D ; Vorotilo, S ; Mukasyan, A ; Sharif University of Technology
    Acta Materialia Inc  2022
    Abstract
    The effect of pulsed direct current (PDC) on solid-state diffusion in the Ni–Al binary system was investigated. Two experimental schemes were employed: in the presence and absence of an electric field. The diffusion couples were heat-treated for 1.5, 3, and 5 h at 803, 833, and 863 K. Under the investigated conditions, only two intermetallic phases (NiAl3 and Ni2Al3) formed at the boundary of the metals. It was shown that the PDC passing through the diffusion couple significantly enhanced the growth rates of both phases. The apparent reaction–diffusion coefficients were DNiAl3=4.0×10−9exp(−[Formula presented]) and DNi2Al3=9.7×10−9exp(−[Formula presented]) in the field-assisted scheme,... 

    Experimental investigation and finite element modelling of PMMA/carbon nanotube nanobiocomposites for bone cement applications

    , Article Soft Matter ; Volume 18, Issue 36 , 2022 , Pages 6800-6811 ; 1744683X (ISSN) Sadati, V ; Khakbiz, M ; Chagami, M ; Bagheri, R ; Chashmi, F. S ; Akbari, B ; Shakibania, S ; Lee, K. B ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Multi-walled carbon nanotubes (MWCNTs) are one of the preferred candidates for reinforcing polymeric nanobiocomposites, such as acrylic bone type of cement. In this study, at first, bulk samples of the reinforced polymethylmethacrylate (PMMA) matrix were prepared with 0.1, 0.25, and 0.5 wt per wt% of MWCNTs by the casting method. Tensile and three-point bending tests were performed to determine the essential mechanical properties of bone cement, such as tensile and bending strengths. The tensile fracture surfaces were investigated by scanning electron microscopy (SEM). The commercial software (Abaqus) was used to conduct finite element analysis (FEA) by constructing a representative volume... 

    SPR-based assay kit for rapid determination of Pb2+

    , Article Analytica Chimica Acta ; Volume 1220 , 2022 ; 00032670 (ISSN) Amirjani, A ; Kamani, P ; Madaah Hosseini, H. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    A recyclable optical nanosensor was developed by immobilizing L-tyrosine functionalized silver nanoparticles (AgNPs) on the polyethylene terephthalate (PET) substrate for rapid determination of Pb2+ ions. At first, the L-tyrosine functionalized AgNPs were assessed in the solution phase; the response time was lower than 15 s, and a limit of detection lower than 9 nM was obtained in the dynamic range of 1–1000 nM. For fabrication of the optical assay kit, the design of experiment (DOE) was used to optimize the immobilization efficiency of the nanoparticles on PET films by studying AgNO3 concentration and pH as two crucial parameters. The assay kit in optimal conditions showed a sharp localized... 

    Oral administration of lithium chloride ameliorate spinal cord injury-induced hyperalgesia in male rats

    , Article PharmaNutrition ; Volume 21 , 2022 ; 22134344 (ISSN) Rahimi, G ; Mirsadeghi, S ; Rahmani, S ; Izadi, A ; Ghodsi, Z ; Ghodsi, S. M ; Rahimi Movaghar, V ; Kiani, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Background: Numerous studies have described the neuroprotective effect of lithium in spinal cord injury in addition to its ameliorative impact on pain sensation. In the present study, we aim to examine the efficacy of 85 mg/kg as well as 50 mg/kg dosage of the lithium chloride (LiCl) through oral consumption in spinal cord injured rats and their effect on gene expression of three candidate genes, corresponding to the hyper-sensitization. Methods: Adult Wistar (male) rats were divided into four experimental groups: control; oral administration of LiCl with 85 mg/kg and 50 mg/kg dosage; and 10 % sucrose receiver as the vehicle. BBB and heat plantar tests were performed weekly throughout four... 

    Experimental investigation of instability of fluid mud layer under surface wave motion

    , Article Physics of Fluids ; Volume 34, Issue 3 , 2022 ; 10706631 (ISSN) Aleebrahim, M. A ; Jamali, M ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Motivated by environmental impacts of surface-wave induced mixing of fluid mud with clear water in nearshore areas, this paper presents quantitative measurements of excitation of interfacial waves over a bed mud layer by a surface wave in a wave flume. After an initial fluidization process, a quasi-standing interfacial wave comprised of four interfacial waves was observed at the interface as a result of a resonant wave interaction with the surface wave. The interfacial waves were subharmonic to the surface wave and traveled at the maximum possible angle from it. The growth rate and kinematic properties of the interfacial waves were measured, and good agreement with theoretical predictions of... 

    CO2 storage in carbonate rocks: An experimental and geochemical modeling study

    , Article Journal of Geochemical Exploration ; Volume 234 , 2022 ; 03756742 (ISSN) Wang, J ; Zhao, Y ; An, Z ; Shabani, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Carbon dioxide storage in geological formations is one of the mature strategies developed for controlling global warming. This paper represents a comprehensive experimental and geochemical modeling study to analyze CO2-brine-rock interactions in a carbonate rock containing calcite and dolomite minerals. PHREEQC geochemical package has been applied for modeling the geochemical reactions in the studied porous media. Firstly, dynamic experiments are performed to calibrate the geochemical model. Then, static experiments are conducted to study the geochemical reactions in the CO2-brine-rock interaction system. This study contributes to analyzing the precipitation-dissolution and ion exchange... 

    Reduction of formation damage in horizontal wellbores by application of nano-enhanced drilling fluids: Experimental and modeling study

    , Article Journal of Petroleum Science and Engineering ; Volume 210 , 2022 ; 09204105 (ISSN) Shojaei, N ; Ghazanfari, M. H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    One of the basic challenges during drilling horizontal wellbores is the damage induced by invasion of mud filtrate into the formation. Addition of nanoparticles to drilling fluids has been recognized as a measure of control and reduction of filtrate invasion, which is the primary mechanism of the aforementioned formation damage. Despite notable advances in composing Nano-enhanced drilling fluids, the role of nanoparticle hydrophobicity on performance of the fluids has not been well studied. This study is based on a combined experimental-numerical methodology. In the experimental section, a procedure to find the optimum composition of Nano-enhanced water-based samples, containing...