Loading...
Search for: experimental-investigations
0.018 seconds
Total 294 records

    Role of Non-Dimensional Numbers in Density Current Stability

    , M.Sc. Thesis Sharif University of Technology Nourmohammadi, Zahra (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Density currents are occurred as a result of the intrusion of a dense fluid into a fluid with a different density. Density differences are typically caused by the difference in temperature, existence of solution or insoluble material and suspended solids. A special kind of density current is called a turbidity current which is a sediment-laden density current. This is a kind of flow which is driven by the force of gravity on suspended sediment particles that causes an excess fractional density with respect to the surrounding ambient fluid. In this work, the 2-D sediment-laden density current on a sloping surface of the channel is investigated through experiments. The channel is 12 m long,... 

    Experimental Investigation of Pulsating Heat Pipe

    , M.Sc. Thesis Sharif University of Technology Jamshidi, Hamed (Author) ; Shafiee, Mohammad Behshad (Supervisor)
    Abstract
    Pulsating heat pipes (PHP) are complex heat transfer devices which unlike conventional heat pipes do not contain any wick in their structure. The effective parameters consist of; working fluid, volumetric filling ratio, operational orientation and input heat power have been investigated here. The experimental set-up we have contemplated, fabricated and tested included five turns, made of copper tube coupled with two glass tube of internal diameter 1.8 mm. The height of evaporator, condenser and adiabatic section was 60, 60 and 150 mm, respectively. The evaporator was heated with electrical element connected to an AC variant power supply and the condenser was connected to a constant... 

    Experimental Investigation of Three Dimensional Turbidity Current

    , M.Sc. Thesis Sharif University of Technology Sheikhi Ahangarkolaei, Javad (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Dense underflows are continuous currents which move down slope due to the fact that their density is heavier than ambient water. Driven by density differences between the inflow and clear water in the reservoirs, the density current plunges the clear water and moves on the bed. While density currents flowing on a sloping bed, the vertical spreading due to water entrainment plays an important role in determining the propagation rate in the longitudinal direction. These currents are similar to wall-jet currents according to structure of the flows but are complicated relative to wall-jet currents due to the existence of density difference. Characteristics of the density current sometimes are... 

    Numerical-Analytical Modeling And Fabrication of A New Vehicle Cooling System Using Vapor-Jet Refrigeration Cycle

    , M.Sc. Thesis Sharif University of Technology Ali Mohammadi, Sajad (Author) ; Farhanieh, Bijan (Supervisor)
    Abstract
    Today, the world energy crisis, the need to optimize its consumption and discussion to reduce fuel consumption has become a vital issue. The conventional vehicle air conditioning system due to compressor in refrigeration cycle, which has causes a severe loss in engine useful power, increasing fuel consumption, etc. Therefore, the main goal of this project is the feasibility of the vehicle cooler replacement with the vapor jet refrigeration cycle. In this cycle, the energy required for completing the refrigeration cycle is provided from the heat of the water inside the radiator that is possible with conventional refrigeration cycle. The first stage of this project includes design and... 

    Fabrication And Experimental Investigation of A New Vehicle Cooling System Using Vapor-Jet Refrigeration Cycle

    , M.Sc. Thesis Sharif University of Technology Soleimani Tehrani, Mohamad Reza (Author) ; Farhanieh, Bijan (Supervisor)
    Abstract
    Today, the world energy crisis, the need to optimize its consumption and discussion to reduce fuel consumption has become a vital issue. The conventional vehicle air conditioning system due to compressor in refrigeration cycle, which has causes a severe loss in engine useful power, increasing fuel consumption, etc. Therefore, the main goal of this project is the feasibility of the vehicle cooler replacement with the vapor jet refrigeration cycle. In this cycle, the energy required for completing the refrigeration cycle is provided from the heat of the water inside the radiator that is possible with conventional refrigeration cycle. The first stage of this project includes design and... 

    Experimental Investigation and Comparison of Water Alternative Gas (WAG) and Continuous Gas Injection (CGI) Processes in One of Iranian Oil Reservoirs

    , M.Sc. Thesis Sharif University of Technology Souri Laki, Ali (Author) ; Ghotbi, Sirous (Supervisor) ; Kharrat, Reyaz (Supervisor)
    Abstract
    Gas injection processes are considered as the second largest Enhanced Oil Recovery processes after thermal processes. In Dealing with the problems of Continuous Gas Injection (CGI) processes, the substitute method of Water Alternating Gas (WAG) is gaining ever increasing attention in field applications. The Hybrid method has the advantages both CGI and WAG processes. Laboratory studies of gas injection methods to show the optimum method and the effect of pressure on the performance of this method is the main objective of this project. Results obtained from these tests can be used in the Enhanced Oil Recovery scenarios for this reservoir. In this project, experiments for Continuous Gas... 

    Modeling and Control of a Carangiform Fish Robot with Experimental Validation of the Forces Obtained by Large Amplitude Elongated Body Theory of Lighthill

    , M.Sc. Thesis Sharif University of Technology Khaghani, Mehran (Author) ; Vossoughi, Gholamreza (Supervisor)
    Abstract
    Modeling and Control are fundamental issues for fish robots, which can play basic roles in design, optimization, fabrication, and eventually utilization of them. A review on the literature reveals the shortage of an analytical closed form model with little simplifications and high precision, and also control works based on such models. Studying LAEBT theory, it is shown that this theory is suitable for determining the forces produced due to the tail movements considered in the present work, and then it is used to determine the forces. Experimental investigations by means of the setup made for this purpose showed that the obtained equations for the forces have got acceptable precision.... 

    Investigation of Micro Heat Pipe Performance Using Nano-Fluid as Working Fluid

    , M.Sc. Thesis Sharif University of Technology Jahani, Kambiz (Author) ; shafii, Mohammad Behshad (Supervisor) ; Saboohi, Yadollah (Co-Advisor)
    Abstract
    Thermal management of micro-electronic devices is a contemporary issue which is increasingly gaining importance in line with the advances in packaging technology. Immediate and consistent multi-disciplinary research is needed to cater to the prevailing trends of net power and flux levels of upcoming micro-electronics products. Material science, packaging concepts, fabrication technology and novel cooling strategies are some of the key areas requiring synchronal research for successful thermal management. Focusing on the latter area, this thesis presents an experimental study on thermal performance of Micro-Closed Loop Pulsating Heat Pipes (MCLPHPs) which are new entrants in the family of... 

    Experimental Investigation and Theoretical Modelling of Swelling and Solution of Coated Polyacrylamide Particle in Porous Media

    , M.Sc. Thesis Sharif University of Technology Ashrafizadeh, Marjan (Author) ; Ramazani Saadatabadi, Ahmad (Supervisor)
    Abstract
    The main purpose of this study is simulation of in-situ release of nano-size coated polymer particles at the water-oil interface during the polymer flooding. Reaching at the flooding interface, the hydrophobic coating starts dissolving into the oil phase. Subsequently, the hydrophilic core polymer starts diffusing back and simultaneously solves into the water phase and increase the in-situ viscosity of the flooding interface. Because of the in-situ release of the polymer and consequently the viscosity reduction of the injected fluid, the driving force for injection of the polymer as well as the amount of polymer used in flooding will reduce. In addition, smart coating can decrease the... 

    Investigation on the Effect of Improper Lubrication on the Performance of Rolling Element Bearings

    , M.Sc. Thesis Sharif University of Technology Mosayebi Kulluje, Reza (Author) ; Behzad, Mehdi (Supervisor) ; Hoviattalab, Maryam (Supervisor)
    Abstract
    In this project, the effect of improper lubrication on vibrational behavior of rolling element bearings is investigated. Different lubrication conditions were deliberately produced using three oils with different viscosity grades on a bearing at different loads and speeds. The acceleration of bearing vibrations were measured, then analyzed by means of squared envelope analysis, a special case of cyclostationary analysis. The results and their comparison showed that decrease in lubricant’s viscosity grade can lead to an increase in magnitude of cyclic frequencies equal to cage frequency and its harmonics. This observation can be helpful in detection of lubricant degradation and in... 

    An Experimental Study of the Effects of Sweep Wing on the Boundary Layer of 2D Wing

    , M.Sc. Thesis Sharif University of Technology Tabrizian, Arshia (Author) ; Soltani, Mohammad Reza (Supervisor) ; Davari, Ali Reza (Co-Advisor)
    Abstract
    The behavior of boundary layer under the effect of the sweep angle is considered. The measurements were performed by a pitot tube rake. Three models with various sweep angels at angles of attack -2, 0 and 2 degree were tested. Both tip and root of all wings were closed by flat plates in order to prevent the flow to roll-up. However the flow field on the wing was still three-dimensional because of the sweep angle. The velocity on the wing has two components; longitudinal and lateral. The cross flow emerges due to the non-equilibrium of pressure and centrifugal forces. The velocity profiles showed that the magnitude of cross flow was stronger near the leading edge of the wing. The cross flow... 

    Experimental Study on Mechanical Properties of Concrete Containing Recycled Polystyrene

    , M.Sc. Thesis Sharif University of Technology Parvinnia, Ahmad (Author) ; Eskandari, Morteza (Supervisor)
    Abstract
    Expanded polystyrene (EPS) products are mostly manufactured as disposable products, designed for a single use after which are recycled or disposed as solid wastes. EPS products are increasingly used specially in form of food containers and packing blocks and most of the time are left in nature without any kind of processing, causing environmental pollution. This project intends to investigate physical characteristics of lighter cement concrete with acceptable compressive strength for non-structural elements, made with different percentages of recycled EPS beads. A group of concrete samples are made by replacing coarse aggregate with equivalent volume of recycled EPS beads. Properties like... 

    Experimental Investigation of the Effect of Inlet Concentration and Obstacle Height on The Structure and Depositional Behavior of Turbidity Currents

    , M.Sc. Thesis Sharif University of Technology Farizan, Ahmad Reza (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein (Co-Advisor)
    Abstract
    Gravity currents are a general class of flows in which the density difference between two fluids drives the flow. Turbidity currents are gravity currents in which the density difference is due to suspended sediment. Reservoir sedimentation is mainly occurs because of sediment transport by these currents. If turbidity currents can be stopped in a reservoir, or influenced in such a way that the sediments are not deposited in critical locations like bottom outlets, the storage capacity of the reservoirs can be increased considerably. In order to do this, various methods such as placing an obstacle in the path of these flows have been proposed. In this study, the effect of inlet sediment... 

    Experimental Investigation of Optimum Acid Injection Rate for Matrix Acidizing in Carbonate Reservoir

    , M.Sc. Thesis Sharif University of Technology Ahmadizadeh, Mansour (Author) ; Ayatollahi, Shahabeddin (Supervisor) ; Ghotbi, Sirous (Supervisor)
    Abstract
    Matrix acidizing as a well stimulation technique is performed to increase the production index by increasing the permeability and removing the formation damage in the near wellbore region. However, several challenges such as corrosion of the tubulars and iron precipitation in the formation are hindering this process. To encounter these challenges, different chemicals, or additives, such as corrosion inhibitors and iron control agents are added to the acid solution. Carbonate acidizing has been carried out using HCl-based stimulation fluids for decades. However, at high temperatures, HCl does not produce satisfactory results because of its fast reaction, acid penetration, and hence surface... 

    Aerodynamic Design of Radial Inflow Turbine’s Volute Casing

    , M.Sc. Thesis Sharif University of Technology Heravi, Sajjad (Author) ; Hajilouy-Benisi, Ali (Supervisor)
    Abstract
    For several decades, turbocharging of internal combustion engines has been a wide spreading technology to increase the engine output power as much as possible. Turbocharger has two main components: compressor, and turbine. Therefore, increasing the efficiency of turbine and compressor has a major role in engine performance improvement. This has been a continuous research goal in 20th century. Considerable advances has been achieved until now. Turbocharger turbine should be matched to engine in a wide range operation conditions with high efficiency. Many researchers have published their achievements considering turbine elements design improvements. This research is focused on the turbine... 

    Experimental Investigation of Performance of Tack Coats

    , M.Sc. Thesis Sharif University of Technology Nabaei, Fatemeh (Author) ; Tabatabaee, Nader (Supervisor)
    Abstract
    In this study performance of tack coat (thin layer bonding asphalt concrete layers) was evaluated. The shear strength of tack coat layer was considered as its measure of performance. Direct shear tests were conducted on two layered HMA specimens. The test variables included the type of tack coat material, application rate (amount of residual bitumen per unit area), substrate condition, normal stress and shear loading rate. Four types of liquid asphalt (CSS, CRS, modified CRS and MC-250) were applied as tack coat. Three substrates conditions were used in the tests. These were 3-days old, 17-days old and long term aged substrates were used. It was found that optimum application rate depends... 

    Experimental Investigation of Heat Transfer Coefficient of Porous Materials in Various Air Pressures

    , M.Sc. Thesis Sharif University of Technology Gholami, Soroush (Author) ; Nouri Broujerdi, Ali (Supervisor)
    Abstract
    Heat transfer in porous media has recently become an important subject in mechanical engineering. Heat transfer in porous media is central in many applications involving industrial devices (chemical engineering, heat exchangers, nuclear reactor, etc...) as well as complex geological formations (in situ combustion and pyrolysis, geothermal sites, etc...). On track to achieve heat transfer methods and heat transfer coefficients of porous materials, this investigation describes the design process of fabrication and experimental analysis of calculation the conduction heat transfer coefficient of the uniform porous materials. We report on thermal conductivity measurements performed on uniform... 

    Experimental Investigation of Effective Parameters on Performance of Micro-sized Bio-electrochemical Systems

    , M.Sc. Thesis Sharif University of Technology Mehran, Narges (Author) ; Yaghmaei, Soheila (Supervisor)
    Abstract
    This study is a report on the fabrication of a novel single-chamber micro-structure microbial fuel cell consisting of spiral anode chamber. A 3×3 cm plexiglass plate with 1 mm thickness was used as main body. A spiral microchannel (1 mm in width and 226 mm in length) was cut using a laser beam as an anodic compartment. Two types of microbial fuel cells with the same anode electrode (stainless steel mesh) and different cathode electrodes (stainless steel mesh and carbon cloth) were constructed in order to investigate the effect of cathode electrode material on microbial fuel cell performance. In both batch and continuous mode, higher power density was obtained by microbial fuel cell with... 

    Design, Manufacturing and Numerical Simulation of Rotating Detonation Combustor

    , M.Sc. Thesis Sharif University of Technology Zamani, Milad (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    During the last six decades, there were remarkable developments in the field of gas turbines. In the early 1950’s, the effciency of gas turbines was 20% and it is improved up to more than 40% for modern gas turbines. In addition, due to the implementation of the combined power cycles, the thermal effciency have been reached to 60%. According to the recent developments, further improvements in this field seem to be more costly and diffcult to obtain. Rotating detonation combustor (RDC) is a new generation of detonation combustors which has simpler design and several advantages compared to jet engine combustors, but it has its intrinsic problems which seem resolvable. Given that the RDC... 

    Experimental Investigation of Acidizing in Natural Fractured Carbonates to the Optimum Injection Condition

    , M.Sc. Thesis Sharif University of Technology Sheikhi, Sobhan (Author) ; Ayatollahi, Shahabodin (Supervisor)
    Abstract
    In many cases, oil and gas extraction from reservoirs due to damage and permeability reduction near wellbore is lower than optimum level and reduces the flow of oil into the well. In fact, formation damage is the collapse of natural condition of reservoirs, In addition to delaying production and increasing costs, it causes early desertification of wells. Well stimulation methods are used to solve this problem and increase production. One of the most effective ways to increase the production of wells is well acidizing. In this study, the acid performance of the fractured carbonate reservoirs has been investigated. In this type of reservoirs, due to the existence of high permeable paths of the...