Loading...
Search for: external-disturbances
0.008 seconds
Total 48 records

    Robust Control of Multiple Integrator Systems Subjected to External Disturbance and Bounded Control

    , M.Sc. Thesis Sharif University of Technology Amini, Samad (Author) ; Haeri, Mohammad (Supervisor)
    Abstract
    This thesis is concerned with the robust control of multiple integrator systems, subjected to input saturation and external disturbance. Since nested saturation method has been demonstrated to be an effective tool for control of a chain of integrators, a feedback law using nested saturation is proposed. In order to deal with disturbance, an extended state observer is applied to nested saturation controller and a comprehensive analysis of stability is also presented. The existence of constant parameters in the proposed controller makes the design conservative which results in performance degradation in some cases at the presence of disturbance. To overcome this issue, an adaptive approach... 

    Design of an ADRC Controller based on ESO to Control Size of Droplet in Micro Electro-Hydrodynamic

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Sasan (Author) ; Haeri, Mohammad (Supervisor)
    Abstract
    This thesis is related to the identification and design of a robust controller for an electrohydrodynamic printer system. As an emerging technology, this printer uses a strong electric field to deliver fluid ink from various conductive materials to the substrate. Modeling this system is complex due to the effect of different variables on its performance. In this project, first a simplified model with numerical solution data of the COMSOL model that is validated experimentaly is proposed. Then, by presenting a new control method that is a variant of an active disturbance rejection control baesd on extended state observer has been controlled. The new control method is actually an amendment to... 

    Enhancing the roll dynamics of an AUV by contra-rotating-propellers

    , Article Ships and Offshore Structures ; 2020 Ebrahimi, M ; Kamali, A ; Abbaspour, M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Roll control of the Autonomous Underwater Vehicles (AUVs) is a significant issue in the current field of research for many researchers in the subject of AUV control system designation. Especially at higher speeds, the roll angle generated by a single rotating propeller or other external disturbances can considerably influence the whole dynamics and therefore the operation of the vehicle. In this paper, the utilisation of a system of contra-rotating-propellers (CRP) to enhance the roll dynamics of an AUV is evaluated by developing a six-degrees-of-freedom (6DOF) dynamics and control systems’ simulator. The results show that: 1. The single propeller system can cause roll angle deflections... 

    Enhancing the roll dynamics of an AUV by contra-rotating-propellers

    , Article Ships and Offshore Structures ; Volume 16, Issue 7 , 2021 , Pages 787-796 ; 17445302 (ISSN) Ebrahimi, M ; Kamali, A ; Abbaspour, M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    Roll control of the Autonomous Underwater Vehicles (AUVs) is a significant issue in the current field of research for many researchers in the subject of AUV control system designation. Especially at higher speeds, the roll angle generated by a single rotating propeller or other external disturbances can considerably influence the whole dynamics and therefore the operation of the vehicle. In this paper, the utilisation of a system of contra-rotating-propellers (CRP) to enhance the roll dynamics of an AUV is evaluated by developing a six-degrees-of-freedom (6DOF) dynamics and control systems’ simulator. The results show that: 1. The single propeller system can cause roll angle deflections... 

    Dual-mode global stabilization of high-order saturated integrator chains: LMI-based MPC combined with a nested saturated feedback

    , Article Nonlinear Dynamics ; Volume 102, Issue 1 , 2020 , Pages 211-222 Adelipour, S ; Ahi, B ; Haeri, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2020
    Abstract
    This paper considers the problem of high-performance global stabilization of an integrator chain via a bounded control at the presence of input disturbance. While nested saturated feedback (NSF) is known as the most inspiring existing solution in the literature, we shall highlight the inherent shortcomings of this approach which cause a poor performance in terms of convergence rate. Then, a novel dual-mode control scheme combining an improved NSF law with a linear matrix inequality (LMI)-based model predictive controller (MPC) is developed to overcome the weaknesses of pure NSF. By offline calculations, a set of nested robust invariant attraction regions and their attributed feedback gains... 

    Hierarchical decentralized control of a five-link biped robot

    , Article Scientia Iranica ; Volume 25, Issue 5B , 2018 , Pages 2675-2692 ; 10263098 (ISSN) Yazdani, M ; Salarieh, H ; Foumani, M. S ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    Most of the biped robots are controlled using pre-computed trajectory methods or methods based on multi-body dynamics models. The pre-computed trajectory-based methods are simple; however, a system becomes highly vulnerable to the external disturbances. In contrast, dynamic methods make a system act faster, yet extensive knowledge is required about the kinematics and dynamics of the system. This fact gave rise to the main purpose of this study, i.e., developing a controller for a biped robot to take advantage of the simplicity and computational efficiency of trajectory-based methods and the robustness of the dynamic-based approach. To do so, this paper presents a two-layer hierarchical... 

    Robust adaptive fractional order proportional integral derivative controller design for uncertain fractional order nonlinear systems using sliding mode control

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 232, Issue 5 , 1 May , 2018 , Pages 550-557 ; 09596518 (ISSN) Yaghooti, B ; Salarieh, H ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    This article presents a robust adaptive fractional order proportional integral derivative controller for a class of uncertain fractional order nonlinear systems using fractional order sliding mode control. The goal is to achieve closed-loop control system robustness against the system uncertainty and external disturbance. The fractional order proportional integral derivative controller gains are adjustable and will be updated using the gradient method from a proper sliding surface. A supervisory controller is used to guarantee the stability of the closed-loop fractional order proportional integral derivative control system. Finally, fractional order Duffing–Holmes system is used to verify... 

    Adaptive synchronization of uncertain fractional-order chaotic systems using sliding mode control techniques

    , Article Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering ; Volume 234, Issue 1 , 2020 , Pages 3-9 Yaghooti, B ; Siahi Shadbad, A ; Safavi, K ; Salarieh, H ; Sharif University of Technology
    SAGE Publications Ltd  2020
    Abstract
    In this article, an adaptive nonlinear controller is designed to synchronize two uncertain fractional-order chaotic systems using fractional-order sliding mode control. The controller structure and adaptation laws are chosen such that asymptotic stability of the closed-loop control system is guaranteed. The adaptation laws are being calculated from a proper sliding surface using the Lyapunov stability theory. This method guarantees the closed-loop control system robustness against the system uncertainties and external disturbances. Eventually, the presented method is used to synchronize two fractional-order gyro and Duffing systems, and the numerical simulation results demonstrate the... 

    Adaptive synchronization of two different uncertain chaotic systems with unknown dead-zone input nonlinearities

    , Article JVC/Journal of Vibration and Control ; Volume 26, Issue 21-22 , 2020 , Pages 1956-1968 Heidarzadeh, S ; Shahmoradi, S ; Shahrokhi, M ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    The present work addresses chaos synchronization between two different general chaotic systems with parametric and structural uncertainties, subject to external disturbances and input dead-zone nonlinearities. In this regard, a novel robust controller has been designed that guarantees asymptotic stability of synchronization errors and boundedness of all closed-loop signals. One advantage of the proposed controller over the existing control algorithms is using only one update law for estimating the structural uncertainties, external disturbances, and unknown characteristics of the dead-zone nonlinearities, which reduces the computational burden considerably. The designed controller is... 

    Model predictive control of blood sugar in patients with type-1 diabetes

    , Article Optimal Control Applications and Methods ; Volume 37, Issue 4 , 2016 , Pages 559-573 ; 01432087 (ISSN) Abedini Najafabadi, H ; Shahrokhi, M ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    In this article, two adaptive model predictive controllers (AMPC) are applied to regulate the blood glucose in type 1 diabetic patients. The first controller is constructed based on a linear model, while the second one is designed by using a nonlinear Hammerstein model. The adaptive version of these control schemes is considered to make them more robust against model mismatches and external disturbances. The least squares method with forgetting factor is used to update the model parameters. For simulation study, two well-known mathematical models namely, Puckett and Hovorka which describe the dynamical behavior of patient's body have been selected. The performances and robustness of the... 

    Adaptive model predictive control-based attitude and trajectory tracking of a VTOL aircraft

    , Article IET Control Theory and Applications ; Volume 12, Issue 15 , 2018 , Pages 2031-2042 ; 17518644 (ISSN) Emami, S. A ; Rezaeizadeh, A ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    A novel adaptive model-based predictive controller for attitude and trajectory tracking of a vertical take-off and landing(VTOL) aircraft in the simultaneous presence of model uncertainties and external disturbances is introduced in this study. Animportant challenge of designing the model-based controllers is developing an accurate model, especially in the presence ofmodel uncertainties. In this study, first, the nominal model of a ducted-fan air vehicle, which is a multi-input multi-outputnonlinear system with non-minimum phase behaviour, is given as the test case of this research. After that, two modified robustand adaptive model predictive controllers are proposed for tracking a... 

    Adaptive robust control of fractional-order swarm systems in the presence of model uncertainties and external disturbances

    , Article IET Control Theory and Applications ; Volume 12, Issue 7 , 2018 , Pages 961-969 ; 17518644 (ISSN) Naderi Soorki, M ; Tavazoei, M. S ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    This study investigates the asymptotic swarm stabilisation of fractional-order swarm systems in the presence of two different kinds of model uncertainties and external disturbances while the upper bound of the uncertainties is a linear function of pseudo-states norms with unknown coefficients. To this end, first a fractional-integral sliding manifold is constructed and then an adaptive-robust sliding mode controller is designed to guarantee the asymptotic swarm stability in a fractional-order linear time-invariant swarm system. The stability analysis of the proposed control system is done based on the Lyapunov stability theorem. Using the proposed controller, the coefficients of the upper... 

    Fault-tolerant predictive trajectory tracking of an air vehicle based on acceleration control

    , Article IET Control Theory and Applications ; Volume 14, Issue 5 , 2020 , Pages 750-762 Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    A novel fault-tolerant model predictive control (MPC)-based trajectory tracking approach for an aerial vehicle is presented in this study. A generalised online sequential extreme learning machine is introduced first to identify the corresponding coefficients of actuator faults. Subsequently, a robust trajectory tracking control is developed based on MPC, where the system constraints can be effectively considered in the designed control scheme. Trajectory tracking control is achieved by controlling only the acceleration of the aerial robot in the MPC structure. This leads to less computational burden and faster closed-loop dynamics. In addition, an effective disturbance observer is employed,... 

    A Second-Order Sliding Mode Observer for Fault Detection and Isolation of Turbocharged SI Engines

    , Article IEEE Transactions on Industrial Electronics ; Volume 62, Issue 12 , June , 2015 , Pages 7795-7803 ; 02780046 (ISSN) Salehi, R ; Vossoughi, G ; Alasty, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This paper proposes a novel method for detection and isolation of wastegate (WG) faults in a turbocharged (TC) gasoline engine. This paper starts with a fault effect analysis on the WG faults, including WG stuck open and stuck closed, which is an early step in a detection strategy design. Then, a second-order sliding-mode observer (SOSMO) is proposed to capture the exhaust manifold dynamics. The observer uses experimentally validated engine models to estimate the WG position and a virtual force. The virtual force represents the external disturbances that disrupt the WG operation and enables the proposed SOSMO to estimate the WG position robust to the faults. Using this force, a detection and... 

    Hardware implementation of an ADRC controller on a gimbal mechanism

    , Article IEEE Transactions on Control Systems Technology ; Volume 26, Issue 6 , 2018 , Pages 2268-2275 ; 10636536 (ISSN) Ahi, B ; Nobakhti, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Active disturbance rejection control (ADRC) is applied to a one-axis gimbal mechanism. The dynamic model of the system is derived and validated from mathematical modeling and practical experiments. Disturbances acting on the complete model of the gimbal mechanism are introduced via base lateral acceleration and angular motion. The ADRC is designed by utilizing an extended state observer for observing and suppressing the effects of external disturbances and internal parameter uncertainties. A PID controller is used to form a basis of comparison for set-point tracking and disturbance rejection performance. The effects of identification errors and observer bandwidth are experimentally... 

    Decentralized robust model predictive control for multi-input linear systems

    , Article UKACC 12th International Conference on Control, CONTROL 2018, 5 September 2018 through 7 September 2018 ; 2018 , Pages 13-18 ; 9781538628645 (ISBN) Adelipour, S ; Haeri, M ; Pannocchia, G ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this paper, a decentralized model predictive control approach is proposed for discrete linear systems with a high number of inputs and states. The system is decomposed into several interacting subsystems. The interaction among subsystems is modeled as external disturbances. Then, using the concept of robust positively invariant ellipsoids, a robust model predictive control law is obtained for each subsystem solving several linear matrix inequalities. Maintaining the recursive feasibility while considering the attenuation of mutual coupling at each time step and the stability of the overall system are investigated. Moreover, an illustrative simulation example is provided to demonstrate the... 

    Design of a hybrid controller for pressure swing adsorption processes

    , Article IEEE Transactions on Control Systems Technology ; 2018 ; 10636536 (ISSN) Fakhroleslam, M ; Bozorgmehri Boozarjomehry, R ; Fatemi, S ; De Santis, E ; Di Benedetto, M. D ; Pola, G ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    The aim of this paper is to synthesize a hybrid controller for pressure swing adsorption (PSA) processes. Since the process is described by a set of partial differential algebraic equations, first a local reduced-order model (LROM) for the process is developed and is formalized as a hybrid system. A hybrid controller is designed for purity control of the process in the presence of external disturbances by determining the maximal safe set of the LROM. A hybrid backward reachability analysis is performed for this purpose. Considering a realistic scenario for PSA processes where the states are not available and the number of measurement sensors is very limited, the desired states are estimated... 

    A hybrid controller for purity control of a pressure swing adsorption process

    , Article 56th IEEE Annual Conference on Decision and Control, CDC 2017, 12 December 2017 through 15 December 2017 ; Volume 2018 , January , 2018 , Pages 2372-2377 ; 9781509028733 (ISBN) Fakhroleslam, M ; Fatemi, S ; Bozorgmehry Boozarjomehry, R ; De Santis, E ; Di Benedetto, M. D ; Pola, G ; ANCA Motion; City of Melbourne; Mathworks; The University of Melbourne; The University of Newcastle; United Technologies Research Center (UTRC) ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    A hybrid controller is proposed for Pressure Swing Adsorption (PSA) processes. Since the process is described by a set of Partial Differential Algebraic Equations (PDAE's), first a Local Reduced Order Model (LROM) for the process is developed and then it is formalized as a hybrid system. A controller is designed for purity control of the process in the presence of external disturbances, by determining the maximal safe set of the LROM. Hybrid backward reachability analysis is performed for this purpose. The controller is designed and applied to a two-bed, six-step PSA process whose dynamical behavior is simulated by a full-order principle-based model of the process. Excellent performance of... 

    Sensitivity to cumulative perturbations for a class of piecewise constant hybrid systems

    , Article IEEE Transactions on Automatic Control ; Volume 65, Issue 3 , 2020 , Pages 1057-1072 Sharifnassab, A ; Tsitsiklis, J. N ; Jamaloddin Golestani, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    We consider a class of continuous-Time hybrid dynamical systems that correspond to subgradient flows of a piecewise linear and convex potential function with finitely many pieces, and which includes the fluid-level dynamics of the Max-Weight scheduling policy as a special case. We study the effect of an external disturbance/perturbation on the state trajectory, and establish that the magnitude of this effect can be bounded by a constant multiple of the integral of the perturbation. © 1963-2012 IEEE  

    Adaptive fuzzy nonlinear sliding-mode controller for a car-like robot

    , Article 5th IEEE Conference on Knowledge Based Engineering and Innovation, KBEI 2019, 28 February 2019 through 1 March 2019 ; 2019 , Pages 686-691 ; 9781728108728 (ISBN) Shirzadeh, M ; Shojaeefard, M. H ; Amirkhani, A ; Behroozi, H ; Intelligent Systems Scientific Society of Japan; Iran Computer and Video Games Foundation; Islamic World Science Citation Center (ISC) ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, a nonlinear controller, which can be updated online by means of fuzzy logic, has been proposed for tracking the trajectory of a car-like robot. The advantage of this control scheme is that it eliminates the effects of model disturbances and uncertainties, which cannot be avoided; and especially when we consider the difficult task of determining the exact kinematic and dynamic models of car-like robots. The proposed approach comprises a robust nonlinear section that uses the sliding mode control and a fuzzy section that can update, online, parameters of the nonlinear controller. The stability and the error convergence of the closed-loop system are verified through the Lyapunov...