Loading...
Search for: factorial-design
0.011 seconds
Total 35 records

    Evaluation of Effective Factors on Utility of Urban Bus for Work Trips (Case Study: Regular Bus of the City of Tehran)

    , M.Sc. Thesis Sharif University of Technology Gholi, Hadi (Author) ; Kermanshah, Mohammad (Supervisor)
    Abstract
    Improvement of public transportation systems through attention to service quality of these systems, is important in order to increase the use of these systems. Various quantitative and qualitative attributes of travel are known effective on service quality of public transportation. The investigated factors in this research, with refrence to regular bus system of the city of Tehran, are: in-vehicle time, fare, crowding and headway. For this purpose, the stated preference data of the respondents who travel to work by regular bus, collected. The survey was conducted during the last month of spring and 360 questionnaires were completed. Stated preference scenarios relating to aforementioned... 

    Design and Assessment of Integrated Transportation Demand Management Policies for Urban Commuter Trips

    , Ph.D. Dissertation Sharif University of Technology Habibian, Meeghat (Author) ; Kermanshah, Mohammad (Supervisor)
    Abstract
    Integration of transportation demand management (TDM) policies, as a realistic and effective approach, is a challenging issue in urban policy studies. This study examines the role of transportation demand management (TDM) policy packages on commuters' mode choice in the city of Tehran. The analysis is based on the results of stated preferences survey developed by efficient choice design as a specialized type of fractional factorial design approach. Five policies, namely increasing parking cost, increasing fuel cost, cordon pricing, transit time reduction and transit access improvement, are assessed in considering six modes of travel to work place. A multinomial logit model has been developed... 

    Factorial Design of Experiments to Identify Effective Factors on Domestic Vehicle Emissions and Fuel Consumption

    , M.Sc. Thesis Sharif University of Technology Esteghamat, Farzad (Author) ; Hosseini, Vahid (Supervisor)
    Abstract
    Reducing air pollutant emissions from vehicles is a difficult and time consuming procedure which needs utilizing of modern emission control equipment and setting strict regulations for car factories and drivers as well. How efficient these policies are and proposing operative solutions for air quality improvement depend on developing a sustainable model which is used in vehicle emission predictions and their share in total emissions. Emission factors are not constant values as they can be affected by various operational and ambient parameters. Development of Emission inventories calls for a huge number of measurements using different vehicles in diverse conditions. Thus, recognition of... 

    Investigation of Internal Rotation About C-N Bond in 4- (phenylacetyl) morpholine by Dynamic Nuclear Magnetic Resonance Spectroscopy

    , M.Sc. Thesis Sharif University of Technology Bazargani Gilani, Mahdieh (Author) ; Tafazzoli, Mohsen (Supervisor)
    Abstract
    In this project, 13 C nuclear magnetic shielding constants and also hindered internal rotation about C-N bond in compound 4 -(phenylacetyle) morpholine are investigated The Factorial Design method was used to obtain the best solution for chemical shift computations and comparison made out in two levels (HF and B 3 LYP). Consequently the (B 3 LYP) method own better data. 13 C NMR Spectra were taken at variable temperature ,and then with simulation of bandshape broadening pattern at coalescence region ,rate constants of exchange were obtained for all temperatures. For simulation of line-shape broadening Spinworks software was used, that with two interfaces made possible simulation with two... 

    Prediction of Gas Phase NMR Chemical Shifts Using Gas Phase NMR and Quantum Calculations in Optimally Selected Level of Theory by Factorial Design

    , Ph.D. Dissertation Sharif University of Technology Shaghaghi, Hoora (Author) ; Tafazzoli, Mohsen (Supervisor) ; Jalali Heravi, Mehdi (Supervisor)
    Abstract
    The optimum wave functions and calculation method were obtained using a 24 factorial design. Based on preliminary experiences, the following four factors at two level was selected: electron correlation, triple-ξ valence shell, diffuse function and polarization function.
    The wave functions for calculating gas phase 1H chemical shifts of primary and secondary alcohols were optimized using factorial design as multivariate technique. Gas-phase experimental 1H chemical shifts of 18 alcohols were used to establish the best levels of theory for obtaining 1H chemical shift, among them the new experimental values of 1H chemical shifts of 10 alcohols were obtained in our laboratory. HF/6-31G(d,p)... 

    Experimental design in analytical chemistry -Part I: Theory

    , Article Journal of AOAC International ; Vol. 97, issue. 1 , 2014 , pp. 3-11 ; ISSN: 10603271 Ebrahimi-Najafabadi, H ; Leardi, R ; Jalali-Heravi, M ; Sharif University of Technology
    Abstract
    This paper reviews the main concepts of experimental design applicable to the optimization of analytical chemistry techniques. The critical steps and tools for screening, including Plackett-Burman, factorial and fractional factorial designs, and response surface methodology such as central composite, Box-Behnken, and Doehlert designs, are discussed. Some useful routines are also presented for performing the procedures  

    Statistical screening of medium components for recombinant production of Pseudomonas aeruginosa ATCC 9027 rhamnolipids by nonpathogenic cell factory pseudomonas putida KT2440

    , Article Molecular Biotechnology ; Vol. 56, issue. 2 , 2014 , p. 175-191 Setoodeh, P ; Jahanmiri, A ; Eslamloueyan, R ; Niazi, A ; Ayatollahi, S. S ; Aram, F ; Mahmoodi, M ; Hortamani, A ; Sharif University of Technology
    Abstract
    Rhamnolipids (RLs) produced by the opportunistic human pathogen Pseudomonas aeruginosa are considered as potential candidates for the next generation of surfactants. Large-scale production of RLs depends on progress in strain engineering, medium design, operating strategies, and purification procedures. In this work, the rhlAB genes extracted from a mono-RLs-producing strain of P. aeruginosa (ATCC 9027) were introduced to an appropriate safety host Pseudomonas putida KT2440. The capability of the recombinant strain was evaluated in various media. As a prerequisite for optimal medium design, a set of 32 experiments was performed in two steps for screening a number of macro-nutritional... 

    Layer selection effect on solid state 13C and 15N chemical shifts calculation using ONIOM approach

    , Article Solid State Nuclear Magnetic Resonance ; Volume 51-52 , 2013 , Pages 31-36 ; 09262040 (ISSN) Shaghaghi, H ; Ebrahimi, H. P ; Bahrami Panah, N ; Tafazzoli, M ; Sharif University of Technology
    2013
    Abstract
    Solid state 13C and 15N chemical shifts of uracil and imidazole have been calculated using a 2-layer ONIOM approach at 32 levels of theory. The effect of electron correlation between two layers has been investigated by choosing two different kinds of layer selection. Factorial design has been applied as a multivariate technique to analyze the effect of wave function and layer selection on solid state 13C and 15N chemical shifts calculations. PBEPBE/6-311+G(d,p) was recommended as an optimally selected level of theory for high layer in both models. It is illustrated that considering the electron correlation of two layers of ONIOM models is important factor to calculate solid state 15N... 

    Quantitative prediction of 13C NMR chemical shifts in solvent using PCM-ONIOM method and optimally selected wave function

    , Article Concepts in Magnetic Resonance Part A: Bridging Education and Research ; Volume 42 A, Issue 1 , FEB , 2013 , Pages 1-13 ; 15466086 (ISSN) Shaghaghi, H ; Fathi, F ; Ebrahimi, H. P ; Tafazzoli, M ; Sharif University of Technology
    2013
    Abstract
    The wave functions for calculating 13C nuclear magnetic chemical shifts of 22 groups of organic compounds (64 molecules) in chloroform solution have been optimally selected using factorial design as a multivariate technique. Our own N-layered integrated molecular orbital and molecular mechanics approach was applied for molecules with different types of carbons. The results have obtained in very good agreement with the experimental values. An additional series (58 molecules) have been used as test sets and their results confirm the validity and reliability of the approaches. The total root mean square deviation and correlation coefficient of predictions (433 carbons) are 1.88 and .9994,... 

    Gauge invariant atomic orbital-density functional theory prediction of accurate gas phase 1H and 13C NMR chemical shifts

    , Article Concepts in Magnetic Resonance Part A: Bridging Education and Research ; Volume 38 A, Issue 6 , 2011 , Pages 269-279 ; 15466086 (ISSN) Ebrahimi, H. P ; Shaghaghi, H ; Tafazzoli, M ; Sharif University of Technology
    Abstract
    Hartree-Fock and density functional theory methods at gauge invariant atomic orbital approach with different simplest basis sets were employed for the computation of chemical shifts. The wave functions for calculating gas-phase 1H and 13C chemical shifts have been optimally selected using empirical models. The effects of electron correlation treatment, triple-ξ valance shell, diffuse function, and polarization function on calculated chemical shifts have been discussed. Through empirical scaling of shielding, accurate predictions of 1H chemical shifts are achieved for the molecules studied, when considering small Pople basis sets. Gas phase experimental 1H chemical shifts in alcohols, amines... 

    Modeling and optimization of an ultrasonic setup basedon combination of finite element method and mathematical full factorial design

    , Article Advanced Materials Research, 6 August 2011 through 7 August 2011, Dalian ; Volume 320 , 2011 , Pages 553-558 ; 10226680 (ISSN) ; 9783037852118 (ISBN) Ghahramani Nick, M ; Akbari, J ; Movahhedy, M. R ; Hoseini, S. M ; Sharif University of Technology
    2011
    Abstract
    Ultrasonic assisted machining (UAM) is an efficient nontraditional machining operation for brittle, hard-to-cut and poor-machinability materials. In UAM, high frequency oscillation in ultrasonic range at low amplitude is imposed on the workpiece or cutting tool. In most cases, the equipments that generates and transfers the vibration, have a complicated structure, and requires significant effort to achieve their optimum function. In this work, a mathematical model is developed and an optimization method is employed for design process. This makes it possible to achieve proper setup and reduce the amount of calculation. For this purpose, the combination of a two level full factorial design is... 

    Enhancement of bioleaching of a spent Ni/Mo hydroprocessing catalyst by Penicillium simplicissimum

    , Article Separation and Purification Technology ; Volume 80, Issue 3 , August , 2011 , Pages 566-576 ; 13835866 (ISSN) Amiri, F ; Mousavi, S. M ; Yaghmaei, S ; Sharif University of Technology
    2011
    Abstract
    Statistically based experimental designs were applied to screen and optimize the bioleaching of spent hydrocracking catalyst by Penicillium simplicissimum. Eleven factors were examined for their significance on bioleaching using a Plackett-Burman factorial design. Four significant variables (pulp density, sucrose, NaNO3, and yeast extract concentrations) were selected for the optimization studies. The combined effect of these variables on metal bioleaching was studied using a central composite design (CCD). Second-order polynomials were established to identify the relationship between the recovery percent of the metals and the four significant variables. The optimal values of the variables... 

    The prediction of amino proton chemical shifts using optimally selected wave function

    , Article Concepts in Magnetic Resonance Part A: Bridging Education and Research ; Volume 38 A, Issue 2 , 2011 , Pages 25-32 ; 15466086 (ISSN) Shaghaghi, H ; Iravani, M ; Tafazzoli, M ; Sharif University of Technology
    2011
    Abstract
    Gas phase amino proton chemical shifts in the 54 of amines have been predicted using Gauge-independent atomic orbital (GIAO) method and optimally selected wave function. The effects of electron correlation, triple-ξ valance shell, diffuse function, and polarization function on calculated amino proton chemical shifts have been investigated using factorial design as a multivariate technique. Different optimized wave functions for different groups of amines were recommended. A wave function as the best level of the theory is proposed for homologue amines covered. In this context, B3LYP/6-311+G and HF/6-311+G wave functions have been recommended as the best and the most efficient level of theory... 

    Predictive equations to estimate spinal loads in symmetric lifting tasks

    , Article Journal of Biomechanics ; Volume 44, Issue 1 , Jan , 2011 , Pages 84-91 ; 00219290 (ISSN) Arjmand, N ; Plamondon, A ; Shirazi Adl, A ; Larivière, C ; Parnianpour, M ; Sharif University of Technology
    2011
    Abstract
    Response surface methodology is used to establish robust and user-friendly predictive equations that relate responses of a complex detailed trunk finite element biomechanical model to its input variables during sagittal symmetric static lifting activities. Four input variables (thorax flexion angle, lumbar/pelvis ratio, load magnitude, and load position) and four model responses (L4-L5 and L5-S1 disc compression and anterior-posterior shear forces) are considered. Full factorial design of experiments accounting for all combinations of input levels is employed. Quadratic predictive equations for the spinal loads at the L4-S1 disc mid-heights are obtained by regression analysis with adequate... 

    Designed amino acid feed in improvement of production and quality targets of a therapeutic monoclonal antibody

    , Article PLoS ONE ; Volume 10, Issue 10 , October , 2015 ; 19326203 (ISSN) Torkashvand, F ; Vaziri, B ; Maleknia, S ; Heydari, A ; Vossoughi, M ; Davami, F ; Mahboudi, F ; Sharif University of Technology
    Public Library of Science  2015
    Abstract
    Cell culture feeds optimization is a critical step in process development of pharmaceutical recombinant protein production. Amino acids are the basic supplements of mammalian cell culture feeds with known effect on their growth promotion and productivity. In this study, we reported the implementation of the Plackett-Burman (PB) multifactorial design to screen the effects of amino acids on the growth promotion and productivity of a Chinese hamster ovary DG-44 (CHO-DG44) cell line producing bevacizumab. After this screening, the amino acid combinations were optimized by the response surface methodology (RSM) to determine the most effective concentration in feeds. Through this strategy, the... 

    Investigating and modeling the cleaning-in-place process for retrieving the membrane permeate flux: Case study of hydrophilic polyethersulfone (PES)

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 62 , May , 2016 , Pages 150–157 ; 18761070 (ISSN) Hedayati Moghaddam, A ; Shayegan, J ; Sargolzaei, J ; Sharif University of Technology
    Taiwan Institute of Chemical Engineers  2016
    Abstract
    In this work the effects of backwash pressure, duration of acid and sodium hydroxide backwashing, sodium hydroxide concentration, and the duration of forward washing on performance of permeate flux recovery (PFR) were investigated. A two-level fractional factorial design (FFD) was used to design the experiments. The ability of back propagation neural network (BPNN) and radial basis function neural network (RBFNN) in predicting the performance of cleaning-in-place (CIP) of hydrophilic polyethersulfone (PES) membrane were investigated. It is found that BPNN has better ability in predicting the PFR performance than RBFNN. The best architecture of BPNN was a network consisting of 1 hidden layer... 

    Modeling the Removal of Phenol Dyes Using a Photocatalytic Reactor with SnO2/Fe3O4 Nanoparticles by Intelligent System

    , Article Journal of Dispersion Science and Technology ; Volume 36, Issue 4 , Apr , 2015 , Pages 540-548 ; 01932691 (ISSN) Sargolzaei, J ; Hedayati Moghaddam, A ; Nouri, A ; Shayegan, J ; Sharif University of Technology
    Taylor and Francis Inc  2015
    Abstract
    The objective of this study was to model the extent of improvement in the degradability of phenol dyes by SnO2/Fe3O4 nanoparticles using a photocatalytic reactor. The effect of operative parameters including catalyst concentration, initial dye concentration, stirring intensity, and UV radiation intensity on the photocatalytic batch reactor during removal of phenol red was investigated. Fractional factorial design and response surface methodology were used to design the experiment layout. The SnO2/Fe3O4 nanoparticles were synthesized using the core-shell method. The results of x-ray diffraction and transmission electron microscopy showed the successful synthesis of these nanoparticles. The... 

    Modeling and optimization of an elliptical shape ultrasonic motor using combination of finite element method and design of experiments

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 8, Issue PARTS A AND B , 2010 , Pages 491-496 ; 9780791844458 (ISBN) Sanikhani, H ; Akbari, J ; Shahidi, A. R ; Darki, A. A ; Sharif University of Technology
    2010
    Abstract
    Standing-wave ultrasonic motors are a modern class of positioning systems, which are used to deliver a high precision linear or rotary motion with an unlimited stroke. The design process should be performed through an effective optimization algorithm in order to guaranty proper and efficient function of these motors. An optimization method of ultrasonic motors is proposed based on the combination of finite element method and factorial design as a design of experiments in this study. The results show the ability of this method in optimal design of ultrasonic motors especially those which have a complex structure and multi modes operation principle  

    Towards obtaining more information from gas chromatography-mass spectrometric data of essential oils: An overview of mean field independent component analysis

    , Article Journal of Chromatography A ; Volume 1217, Issue 29 , 2010 , Pages 4850-4861 ; 00219673 (ISSN) Jalali Heravi, M ; Parastar, H ; Sereshti, H ; Sharif University of Technology
    2010
    Abstract
    Mean field independent component analysis (MF-ICA) along with other chemometric techniques was proposed for obtaining more information from multi-component gas chromatographic-mass spectrometric (GC-MS) signals of essential oils (mandarin and lemon as examples). Using these techniques, some fundamental problems during the GC-MS analysis of essential oils such as varying baseline, presence of different types of noise and co-elution have been solved. The parameters affecting MF-ICA algorithm were screened using a 25 factorial design. The optimum conditions for MF-ICA algorithm were followed by deconvolution of complex GC-MS peak clusters. The number of independent components (ICs) (chemical... 

    Statistical analysis for enzymatic decolorization of acid orange 7 by Coprinus cinereus peroxidase

    , Article International Biodeterioration and Biodegradation ; Volume 64, Issue 3 , 2010 , Pages 245-252 ; 09648305 (ISSN) Yousefi, V ; Kariminia, H. R ; Sharif University of Technology
    2010
    Abstract
    Enzymatic decolorization of the monoazo dye, acid orange 7 (AO7) by the fungal peroxidase from Coprinus cinereus NBRC 30628 is a complex system, which is greatly affected by temperature, pH, enzyme activity and the concentrations of H2O2 and dye concentration. The study of these factors and investigating the combined interactions between them by applying one-factor-at-a-time (OFAT) method and two other statistical methods including 2-factorial method and response surface methodology (RSM) were aimed in this work. Through OFAT analysis the optimized conditions were a temperature of 25 °C, pH 9.0 with H2O2 concentration of about 3.9 mM and AO7 concentration of 40 mg/l. A complete...