Loading...
Search for: fattahi--a
0.008 seconds
Total 78 records

    Inducing high exo selectivity in Diels–Alder reaction by dimethylborane substituent: a DFT study

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Taherinia, D ; Fattahi, A ; Sharif University of Technology
    Nature Research  2022
    Abstract
    In this work, the role of Lewis acid–base (LAB) interaction on the stereoselectivity of the Diels–Alder (DA) reaction has been studied by DFT in gas and solution (dichloromethane) phases. The calculations were performed at the B3LYP/6-311G++ (d, p) level. Two different series of DA reactions were investigated: (1)—three mono-substituted cyclopentadienes + dimethyl(vinyl)borane; (2)—five α,β-unsaturated carbonyl compounds + cyclopenta-2,4-dien-1-yldimethylborane. The reacting diene and dienophile pairs were chosen to restrict LAB interaction to the exo reaction pathway. It was found that in some of the examined cases, the favorable LAB interaction is so strong that it can lead to a completely... 

    Design of ionic liquids containing glucose and choline as drug carriers, finding the link between QM and MD studies

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Kalhor, S ; Fattahi, A ; Sharif University of Technology
    Nature Research  2022
    Abstract
    Designing drug delivery systems for therapeutic compounds whose receptors are located in the cytosol of cells is challenging as a bilayer cell membrane is negatively charged. The newly designed drug delivery systems should assist the mentioned drugs in passing the membrane barriers and achieving their targets. This study concentrated on developing novel ionic liquids (ILs) that interact effectively with cell membranes. These ILs are based on glucose-containing choline and are expected to be non-toxic. The binding energies of the known pharmaceutically active ionic liquids were calculated at the B3LYP/6-311++G(d,p) level in the gas phase and compared with those of our newly designed... 

    Design of amino acid- and carbohydrate-based anticancer drugs to inhibit polymerase η

    , Article Scientific Reports ; Volume 12, Issue 1 , 2022 ; 20452322 (ISSN) Kalhor, S ; Fattahi, A ; Sharif University of Technology
    Nature Research  2022
    Abstract
    DNA polymerase η (polη) is of significant value for designing new families of anticancer drugs. This protein takes a role in many stages of the cell cycle, including DNA replication, translesion DNA synthesis, and the repairing process of DNA. According to many studies, a high level of expression of polη in most cases has been associated with low rates of patients' survival, regardless of considering the stage of tumor cells. Thus, the design of new drugs with fewer side effects to inhibit polη in cancerous cells has attracted attention in recent years. This project aims to design and explore the alternative inhibitors for polη, which are based on carbohydrates and amino acids. In terms of... 

    An efficient one-pot synthesis of 1-aminophosphonates

    , Article Synthesis (Germany) ; Volume 55, Issue 1 , Volume 55, Issue 1 , 2022 , Pages 121-130 ; 00397881 (ISSN) Kaboudin, B ; Faghih, S ; Alavi, S ; Naimi Jamal, M. R ; Fattahi, A ; Sharif University of Technology
    Georg Thieme Verlag  2022
    Abstract
    1-Aminophosphonates are valuable compounds with wide range of applications in biological and industry. Various reaction conditions and catalysts have been reported for the synthesis of 1-aminophosphonates via three-component (dialkyl phosphite + aldehyde + amine) or two-component reaction (dialkyl phosphite + imine). Here a solvent-free synthesis of 1-aminophosphonates under very mild reaction conditions is reported. The three-component condensation reactions of dialkyl phosphite, carbonyl compound, and an amine gave 1- aminophosphonates in good to excellent yields under solvent- and catalyst-free conditions at ambient temperature. Hydrophosphorylation of imines in the presence of dialkyl... 

    Computational insight into networking H-bonds in open and cyclic forms of galactose

    , Article Journal of Molecular Structure ; Volume 1255 , 2022 ; 00222860 (ISSN) Kotena, Z. M ; Fattahi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this work, the intramolecular H-bonds in galactose were studied using DFT at the B3LYP/6–311++G (d,p) levels of theory, atoms in molecules (AIM), and natural bond orbital (NBO). AIM and NBO analysis revealed a cooperative network of trifurcated, bifurcated, and normal H-bonds for the conjugate bases of open galactse (O-Gal). While for the conjugate base of the cyclic form of galactose, we identified bifurcated and normal H-bonds, which may highlight a crucial feature of the biological activity of a whole class of natural sugars. The O-H…O bonds are categorized as mostly electrostatic, strong H-bonds and more favorable, whereas for multiple interactions involving C=O…H, C-H…O and C-H…H-C... 

    In silico design of novel anticancer drugs with amino acid and carbohydrate building blocks to inhibit PIM kinases

    , Article Molecular Simulation ; Volume 48, Issue 6 , 2022 , Pages 526-540 ; 08927022 (ISSN) Kalhor, S ; Fattahi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    PIM-1 is a serine-threonine kinase mainly expressed in tissues like the Thymus, spleen, bone marrow, and liver. Overexpression of PIM kinases occurs in various types of human tumours, such as lymphomas, prostate cancer, and oral cancer. As a result, the design of drugs to inhibit PIM-1 in cancerous cells has attracted much attention in recent years. This study aimed to design the alternative inhibitors for PIM-1 kinase, which are based on carbohydrates and amino acids and are expected to be non-toxic with the same chemotherapeutic effects as the traditional known anticancer drugs. The combinatorial use of quantum mechanics (QM) and molecular dynamic simulation (MD) has enabled us to... 

    Computational insight into networking H-bonds in open and cyclic forms of glucose

    , Article Journal of Physical Organic Chemistry ; Volume 35, Issue 1 , 2022 ; 08943230 (ISSN) Kotena, Z. M ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2022
    Abstract
    We have studied the intramolecular H-bonds existing in cyclic and open forms of glucose using B3LYP/6-311++G(d,p) level, AIM, and NBO methods. The theoretical results indicated that based on acidity values, (ΔHacid), glucose in the open form is more acidic than cyclic form. The acidity values for open and cyclic glucose (332 and 338 kcal/mol) exhibit significantly lower values (i.e., stronger acid) than the reported acidity values for α-/ß-anomers of D-glucopyranose and simple alcohols. Because their conjugate bases are more stabilized through trifurcated and bifurcated intramolecular H-bonds. AIM analysis showed normal H-bonds in the conjugate bases of open glucose (O-Glc), bifurcated, and... 

    Hydrogen bonding effects on acidity enhancement of barbiturates and their metabolites in gas and solution phase, a DFT study

    , Article Computational and Theoretical Chemistry ; Volume 1196 , 2021 ; 2210271X (ISSN) Daneshfar, M ; Fattahi, A ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Density functional theory method and B3LYP/6-31+G(d) level of theory were used to predict the acidity of barbiturates and their corresponding metabolites in the gas and solution phase (H2O). Polarized continuum model was applied to calculate pKa values of barbiturates and metabolites. A comparison between acidity of barbiturates and metabolites in the gas and solution phase indicates that the acidity strength of barbiturates enhances with the increase of intramolecular hydrogen bonds in metabolites. This acidity can increase to 9.47 kcal/mol in gas phase and 2.73 pKa units in solution phase for a typical metabolite of barbiturate due to the effect of intramolecular hydrogen bonds. Also,... 

    Acidity enhancement of α-carbon of beta diketones via hydroxyl substituents: A density functional theory study

    , Article Journal of Physical Organic Chemistry ; Volume 34, Issue 3 , 2021 ; 08943230 (ISSN) Rahimi, M ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    Density functional theory method and B3LYP/6-311++G(d,p) level of theory were used to determine the acidity of α-carbon in the hydroxyl derivatives of beta diketones in the gas phase. An investigation of acidity strength in the gas phase indicates that α-carbon of hydroxyl derivatives of beta diketones become stronger acids than the α-carbon of beta diketone itself as their conjugate bases gain more stability via both enolate and hydrogen bond formation. Natural bond orbital and quantum theory of atoms in molecules analyses also confirm the role of hydrogen bond interactions on increasing the acidity of α-carbon of hydroxyl derivatives of beta diketones. © 2020 John Wiley & Sons, Ltd  

    Theoretical investigation of the effect of hydrogen bonding on the stereoselectivity of the Diels-Alder reaction

    , Article New Journal of Chemistry ; Volume 45, Issue 36 , 2021 , Pages 16760-16772 ; 11440546 (ISSN) Taherinia, D ; Mahmoodi, M. M ; Fattahi, A ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    In this article, we report the computational examination of the impact of hydrogen bonding (HB) on the stereoselectivity of a series of Diels-Alder (DA) reactions. Four different types of diene/dienophile couples were studied including (a) cyclopenta-2,4-dien-1-ol and heteroatom-substituted cyclopentenes, (b) substituted cyclopentadienes andN-protonated 2,5-dihydro-1H-pyrrole, (c) furan andN-protonated 5-azabicyclo[2.1.1]hex-2-ene, and (d)N-protonated cyclopenta-2,4-dien-1-amine and α,β-unsaturated carbonyl compounds. These systems were designed such that the HB can only exist in theexoreaction pathway. The optimized structures of the transition states (TSs) and products, along with the... 

    Gold at crossroads of radical generation and scavenging at density functional theory level: Nitrogen and oxygen free radicals versus their precursors in the face of nanogold

    , Article Journal of Physical Organic Chemistry ; Volume 34, Issue 1 , 2021 ; 08943230 (ISSN) Ahmadi, A ; Kassaee, M. Z ; Ayoubi Chianeh, M ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In our previous report (J. Phys. Org. Chem., 2017), we discussed the dual behavior of gold nanocluster (Au3 NC), where it scavenged reactive oxygen species (ROS) while promoted their generation to a lesser extent. Continuing this quest, we investigate the effects of Au3 NC on common reactive nitrogen species (RNS: O=N˙ and O=N-O) and their precursors (O=N-H and O=N-O-H, respectively), at B3LYP/LACVP+* level of theory. We compare the results with those of prevalent ROS (H-O˙ and H-O-O˙) and their precursors (H-O-H and H-O-O-H, respectively). To this end, various parameters are probed such as binding energy (Eb), bond dissociation energy (BDE), bond lengths, Mullikan spin density (MSD),... 

    Gold at crossroads of radical generation and scavenging at density functional theory level: Nitrogen and oxygen free radicals versus their precursors in the face of nanogold

    , Article Journal of Physical Organic Chemistry ; Volume 34, Issue 1 , 2021 ; 08943230 (ISSN) Ahmadi, A ; Kassaee, M.Z ; Ayoubi-Chianeh, M ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2021
    Abstract
    In our previous report (J. Phys. Org. Chem., 2017), we discussed the dual behavior of gold nanocluster (Au3 NC), where it scavenged reactive oxygen species (ROS) while promoted their generation to a lesser extent. Continuing this quest, we investigate the effects of Au3 NC on common reactive nitrogen species (RNS: O=N˙ and O=N-O) and their precursors (O=N-H and O=N-O-H, respectively), at B3LYP/LACVP+* level of theory. We compare the results with those of prevalent ROS (H-O˙ and H-O-O˙) and their precursors (H-O-H and H-O-O-H, respectively). To this end, various parameters are probed such as binding energy (Eb), bond dissociation energy (BDE), bond lengths, Mullikan spin density (MSD),... 

    New pathways of stability for NHCs derived from azole, di-azole, n-tetrazole, and ab-tetrazole, by DFT

    , Article Journal of Molecular Modeling ; Volume 26, Issue 11 , 2020 Ahmadi, A ; Kassaee, M. Z ; Ayoubi Chianeh, M ; Fattahi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    We have investigated the pathways of stability for NHCs derived from azole, di-azole, n-tetrazole, and ab-tetrazole (1a, 2a, 3a, and 4a, respectively), at the M06/6-311++G** level of theory. Optimization and vibrational frequency calculations of ground states (GS) and transition states (TS) are performed to identify Gibbs free energies and nature of stationary points, respectively. Two possible pathways of stability for 1a-4a are compared and contrasted which entail dimerization through hydrogen bonding (HB) and covalent bonding (CB). The CB pathway comprises head to head (HH) and head to tail (HT) dimerizations. Plausible reaction profiles are illustrated for 1a-4a along with the mechanism... 

    Influence of H-bonds on acidity of deoxy-hexose sugars

    , Article Journal of Physical Organic Chemistry ; Volume 33, Issue 10 , June , 2020 Mosapour Kotena, Z ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    The unusual monosaccharaides such as deoxy-hexose sugars, including methyl-pentose and aldo-pentose, are promising and important sugars in life science. However, little research on H-bond interactions in these systems has been reported. The aldo-pentose has a proton instead of the CH2OH group on C5; conversely, methyl-pentose has a CH3 group on C5. The aim of the present study is to investigate the role and nature of intramolecular H-bonds on acidity of CH3-pentose sugars (L-fucose and L-rhamnose) and aldo-pentose sugars (D-xylose, L-lyxose, D-ribose, and L-arabinose) using B3LYP/6-311++G (d, p) level. The calculated acidity values (ΔHacid) of these Dexoy-hexose were found to be from 343 to... 

    Comparison of acidity and metal ion affinity of D-Glucosamine and N-acetyl-D-glucosamine, a DFT study

    , Article Journal of Molecular Graphics and Modelling ; Volume 98 , April , 2020 Mosapour Kotena, Z ; Fattahi, A ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    The derivatives of glucose such as glucosamine (β-D-GlcN) and N-acetyl-D-β-glucosamine (GlcNAc) are significant in several biological systems. D-GlcN has been used widely to treat osteoarthritis in humans and animal models as well as GlcNAc has been proposed as a treatment for autoimmune diseases. The DFT/B3LYP/6–311++G (d,p) method as well as QTAIM and NBO analyses were used to the acidity values of D-GlcN and GlcNAc sugars and their complexes with alkali ions in the gas phase. The Li+, Na+ and K+ prefer bi-dentate chelate in these complexes. The computed results indicate that metal ion affinity (MIA) in GlcNAc is higher than that in D-GlcN. There are direct correlations between the MIA... 

    Acidity enhancement of α-carbon of beta diketones via hydroxyl substituents: A density functional theory study

    , Article Journal of Physical Organic Chemistry ; 2020 Rahimi, M ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2020
    Abstract
    Density functional theory method and B3LYP/6-311++G(d,p) level of theory were used to determine the acidity of α-carbon in the hydroxyl derivatives of beta diketones in the gas phase. An investigation of acidity strength in the gas phase indicates that α-carbon of hydroxyl derivatives of beta diketones become stronger acids than the α-carbon of beta diketone itself as their conjugate bases gain more stability via both enolate and hydrogen bond formation. Natural bond orbital and quantum theory of atoms in molecules analyses also confirm the role of hydrogen bond interactions on increasing the acidity of α-carbon of hydroxyl derivatives of beta diketones. © 2020 John Wiley & Sons, Ltd  

    Molecular interaction of fibrinogen with zeolite nanoparticles

    , Article Scientific Reports ; Volume 9, Issue 1 , 2019 ; 20452322 (ISSN) Derakhshankhah, H ; Hosseini, A ; Taghavi, F ; Jafari, S ; Lotfabadi, A ; Ejtehadi, M. R ; Shahbazi, S ; Fattahi, A ; Ghasemi, A ; Barzegari, E ; Evini, M ; Saboury, A. A ; Shahri, S. M. K ; Ghaemi, B ; Ng, E. P ; Awala, H ; Omrani, F ; Nabipour, I ; Raoufi, M ; Dinarvand, R ; shahpasand, K ; Mintova, S ; Hajipour, M. J ; Mahmoudi, M ; Sharif University of Technology
    Nature Publishing Group  2019
    Abstract
    Fibrinogen is one of the key proteins that participate in the protein corona composition of many types of nanoparticles (NPs), and its conformational changes are crucial for activation of immune systems. Recently, we demonstrated that the fibrinogen highly contributed in the protein corona composition at the surface of zeolite nanoparticles. Therefore, understanding the interaction of fibrinogen with zeolite nanoparticles in more details could shed light of their safe applications in medicine. Thus, we probed the molecular interactions between fibrinogen and zeolite nanoparticles using both experimental and simulation approaches. The results indicated that fibrinogen has a strong and... 

    Influence of remote intramolecular hydrogen bonding on the acidity of hydroxy-1,4-benzoquinonederivatives: A DFT study

    , Article Journal of Physical Organic Chemistry ; Volume 32, Issue 4 , 2019 ; 08943230 (ISSN) Bayat, A ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    In this study, the effects of the remote intramolecular hydrogen bonding on the acidity of hydroxy-1,4-benzoquinone derivatives have been investigated ab initio by employing density functional theory (DFT) methods. The computational studies were performed for both gas and solution (H 2 O, DMSO, and MeCN solutions) phases. Our results indicated that remote hydrogen bonding could play an important role in increasing the acidity of hydroxy-1,4-benzoquinone. Noncovalent interaction reduced density gradient (NCI-RDG) methods were used to visualize the attractive and repulsive interactions in the studied acids and their conjugate bases. Natural bond orbital (NBO) analysis was performed to confirm... 

    The free radical scavenging activity of lespedezacoumestan toward ˙OH radical: a quantum chemical and computational kinetics study

    , Article Journal of Physical Organic Chemistry ; Volume 31, Issue 2 , February , 2018 ; 08943230 (ISSN) Bayat, A ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    The free radical activity of lespedezacoumestan was investigated toward hydroxyl (˙OH) radical in polar and nonpolar media using density functional theory. Four reaction mechanisms including radical adduct formation, hydrogen atom transfer, sequential single electron-proton transfer (SET-PT), and sequential proton loss electron transfer were considered. The rate constants and branching ratio for all possible sites of reaction were calculated and reported for the first time. According to the obtained results, lespedezacoumestan reacts faster with ˙OH radical in aqueous solution than in nonpolar media. Also, lespedezacoumestan is an excellent ˙OH radical scavenger regardless of the environment... 

    Ionic liquid based on 6-amino-6-deoxy hexopyranose cation and BF4 ¯, PF6 ¯, and ClO4 ¯ as anions: a DFT study on the structural and electronic properties

    , Article Journal of Physical Organic Chemistry ; Volume 31, Issue 5 , 2018 ; 08943230 (ISSN) Kheirjou, S ; Fattahi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    In this study, the structural and electronic properties of a carbohydrate-based (6-amino-6-deoxy hexopyranose [ADHP]) ionic liquid were explored. The interactions among 3 anions (BF4 ¯, PF6 ¯, and ClO4 ¯) and ADHP as cation were investigated at B3LYP/6-311++G(d,p) level. Based on the calculated interaction energy, it was found that PF6 ¯ anion has the highest interaction energy with ADHP. It was found that the hydrogen bonds play an important role in the interaction of ion pairs. The nature of hydrogen bonds in the optimized ion pars was analyzed by using natural bond orbital analysis and the quantum theory of atoms in molecules. The linear relationship between electron density at the bond...