Loading...
Search for: fault-injection
0.007 seconds
Total 45 records

    Improving the Reliability of Engine Control Units in Vehicles

    , M.Sc. Thesis Sharif University of Technology Moloudi, Mohammad Amin (Author) ; Ejlali, Alireza (Supervisor)
    Abstract
    Vehicles are safety-critical Cyber-Physical Systems (CPSs) consisting of hundreds of control units. The Engine Control Unit (ECU) is a fundamental part of a vehicle, and by applying reliability improvement techniques to the ECU, we can prevent catastrophes, performance degradation, and environmental damage. However, like any other CPS, traditional reliability assessment of the cyber and physical parts is insufficient as these parts are tightly coupled. Furthermore, the ECU consists of many mutually dependent subsystems, the failure of which will fail the whole vehicle system. Hence, to compensate for the hardware redundancy cost, we have improved the reliability of the system's bottleneck.... 

    FPGA-based Fault Injection for Evaluating the Fault Tolerance of Embedded Processors

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Abbas (Author) ; Ejlali, Alireza (Supervisor)
    Abstract
    One the most important issues in most of embedded systems is reliability and fault tolerance.Ensure of correct operation and evaluate reliability and fault tolerance of embedded proces-sors as a critical part of embedded systems, would be necessary. Fault injection is one themostly used methods for evaluating those features. Using FPGA devices is a good alterna-tive for time consuming simulation-based fault injection method because of their speed. But,there are some critical issues in FPGA-based fault injection methods which are controllabil-ity and observability. In addition to need for efficient and applicable observation and controlmechanism to handle fault injection experiments, a... 

    Workload-aware Fault-injection for Speeding-up Evaluation of the Dependable Systems

    , M.Sc. Thesis Sharif University of Technology Javani Jananlu, Saeid (Author) ; Miremadi, Ghassem (Supervisor)
    Abstract
    Dependability assessment is an important preliminary in the design of dependable systems. Simulation Based Fault Injection (SBFI) is a common way to evaluate system dependability. To achieve high accuracy in SBFI, a large amount number of fault injection is required, which is very time consuming. Many of ideas are implied to solve this disadvantage of SBFI. In this work, we propose a method that uses information of workload execution on the processor to reduce faults to be injected during the SBFI campaign. We concentrate on Single Event Upsets because of its majority and repeating interval. Our proposed method first gathers information about various regions of the processor by probing... 

    Fault Modeling of Transient Faults in Embedded Processors

    , M.Sc. Thesis Sharif University of Technology Tajik, Hossein (Author) ; Ejlali, Alireza (Supervisor)
    Abstract
    Many embedded processors are used in harsh environments and their behavior should be investigated against the incidence of common faults. Fault Injection is a prevalent method to do this investigation. Simulation-based fault injection is one of the most prominent forms of fault injection. A fault model is required to do simulation-based fault injection. Simulated faults should have the most similarity to the real faults. Temperature variation and in the extreme case thermal shock is one of the probable faults in harsh environment. In this thesis, we want to propose fault models for thermal shock in various abstraction levels, evaluate and compare these fault models and present methods to use... 

    Evaluation of Fault Tolerance for SRAM-Based FPGAs by Fault Injection into Configuration Bits

    , M.Sc. Thesis Sharif University of Technology Abolhassani Ghazaani, Elyas (Author) ; Miremadi, Ghasem (Supervisor)
    Abstract
    Reconfiguration, short development time and low cost have made Field Programmable Gate Arrays (FPGAs) an appealing option for digital circuit designers. Meanwhile, the occurrence of Single Event Upset (SEU) in configuration memory of SRAM-based FPGAs can change the implemented design inside the FPGA chip. Assessing reliability of FPGA-based designs against pernicious effects of SEU has long been a challenge. Several approaches can be used to evaluate the reliability of a given design. One important approach is injecting fault into the configuration memory of a device.The existing fault injection frameworks are specific in the property e.g. providing speed only, neglecting other properties of... 

    Design and Evaluation of a Master/Checker Method for an Embedded Processor

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Mojtaba (Author) ; Miremadi, Ghasem (Supervisor)
    Abstract
    Ever increasing applications of embedded systems have motivated the designers to pay special attention to the design requirements of such systems. Among embedded applications, safety-critical systems have high reliability requirements as failures in such systems may endanger human life or result in catastrophic consequences. Embedded processors as the computation cores of embedded systems are very crucial from reliability point of view. This is because; a failure in the processor most probably leads to a system failure. One effective way to protect embedded processors against environmental faults is to use system level fault-tolerant techniques such as Master/Checker (M/C) or Triple Modular... 

    Dependability evaluation of Altera FPGA-based embedded systems subjected to SEUs

    , Article Microelectronics Reliability ; Volume 47, Issue 2-3 , 2007 , Pages 461-470 ; 00262714 (ISSN) Zarandi, H. R ; Miremadi, S. G ; Sharif University of Technology
    2007
    Abstract
    Dependability evaluation of embedded systems due to the integration of hardware and software parts is difficult to analyze. In this paper, we have proposed an experimental method to determine sensitivity to soft errors in an embedded system exploiting Altera SRAM-based FPGAs. The evaluation is performed using both the hardware and software parts of the embedded system in a single framework. To do this, the HDL hardware model of the target system as well as the C-written software codes of the target system, are required. Both permanent and transient faults are injected into the partially- or fully-synthesizable hardware of the target system and this can be performed during the design cycle of... 

    Experimental evaluation of three concurrent error detection mechanisms

    , Article 2006 International Conference on Microelectronics, ICM 2006, Dhahran, 16 December 2006 through 19 December 2006 ; 2006 , Pages 67-70 ; 1424407656 (ISBN); 9781424407651 (ISBN) Vahdatpour, A ; Fazeli, M ; Miremadi, S. G ; Sharif University of Technology
    2006
    Abstract
    This paper presents an experimental evaluation of the effectiveness of three hardware-based control flow checking mechanisms, using software-implemented fault injection (SWIFI) method. The fault detection technique uses reconfigurable of the shelf FPGAs to concurrently check the execution flow of the target program. The technique assigns signatures to the target program in the compile time and verifies the signatures using a FPGA as a watchdog processor to detect possible violation caused by the transient faults. A total of 3000 faults were injected in the experimental embedded system, which is based on an 8051 microcontroller, to measure the error detection coverage. The experimental... 

    Transient error detection in embedded systems using reconfigurable components

    , Article Industrial Embedded Systems - IES'2006, Antibes Juan-Les-Pins, 18 October 2006 through 20 October 2006 ; 2006 ; 142440777X (ISBN); 9781424407774 (ISBN) Vahdatpour, A ; Fazeli, M ; Miremadi, S. G ; Sharif University of Technology
    2006
    Abstract
    In this paper, a hardware control flow checking technique is presented and evaluated. This technique uses reconfigurable of the shelf FPGA in order to concurrently check the execution flow of the target micro processor. The technique assigns signatures to the main program in the compile time and verifies the signatures using a FPGA as a watchdog processor to detect possible violation caused by the transient faults. The main characteristic of this technique is its ability to be applied to any kind of processor architecture and platforms. The low imposed hardware and performance overhead by this technique makes it suitable for those applications in which cost is a major concern, such as... 

    FPGA-based fault injection into synthesizable verilog HDL models

    , Article 2nd IEEE International Conference on Secure System Integration and Reliability Improvement, SSIRI 2008, Yokohama, 14 July 2008 through 17 July 2008 ; 2008 , Pages 143-149 ; 9780769532660 (ISBN) Shokrolah Shirazi, M ; Miremadi, S. G ; Sharif University of Technology
    2008
    Abstract
    This paper presents an FPGA-based fault injection tool, called FITO that supports several synthesizable fault models for dependability analysis of digital systems modeled by Verilog HDL. Using the FITO, experiments can be performed in real-time with good controllability and observability. As a case study, an OpenRISC 1200 microprocessor was evaluated using an FPGA circuit. About 4000 permanent, transient, and SEU faults were injected into this microprocessor. The results show that the FITO tool is more than 79 times faster than a pure simulation-based fault injection with only 2.5% FPGA area overhead. © 2008 IEEE  

    Classification of activated faults in the flexray-based networks

    , Article Journal of Electronic Testing: Theory and Applications (JETTA) ; Volume 26, Issue 5 , October , 2010 , Pages 535-547 ; 09238174 (ISSN) Sedaghat, Y ; Miremadi, S. G ; Sharif University of Technology
    Abstract
    FlexRay communication protocol is expected to become the de-facto standard for distributed safety-critical systems. This paper classifies the effects of transient single bit-flip fault injections into the FlexRay communication controller. In this protocol, when an injected fault is activated, this may result in one or more error types, i.e.: Boundary violation, Conflict, Content, Freeze, Synchronization, Syntax, and Invalid frame. To study the activated faults, a FlexRay bus network, composed of four nodes, was modeled by Verilog HDL; and a total of 135,600 transient faults was injected in only one node, called the target node. The results show that only 9,342 of the faults (about 6.9%) were... 

    A low-cost on-line monitoring mechanism for the flexray communication protocol

    , Article Proceedings - 2009 4th Latin-American Symposium on Dependable Computing, LADC 2009, 1 September 2009 through 4 September 2009, Joao Pessoa ; 2009 , Pages 111-118 ; 9780769537603 (ISBN) Sedaghat, Y ; Miremadi, G ; Sharif University of Technology
    2009
    Abstract
    Nowadays, communication protocols are used in safety-critical automotive applications. In these applications, fault tolerance is a main requirement and the existence of single points of failure is a serious threat to system failures. Among the communication protocols, FlexRay is expected to become the communication backbone for future automotive systems. In this paper, we identify single points of failure in the FlexRay protocol by injecting a total of 135,600 single-bit transient faults into all accessible registers of the FlexRay communication controller. The results showed that about 1.2% of all injected faults caused the controller to freeze immediately. Based on these results and... 

    Categorizing and analysis of activated faults in the flexray communication controller registers

    , Article Proceedings of the 14th IEEE European Test Symposium, ETS 2009, 25 May 2009 through 29 May 2009, Sevilla ; 2009 , Pages 121-126 ; 9780769537030 (ISBN) Sedaghat, Y ; Miremadi, G ; Sharif University of Technology
    2009
    Abstract
    FlexRay communication protocol is expected becoming the de-facto standard for distributed safetycritical systems. In this paper, transient single bit-flip faults were injected into the FlexRay communication controller to categorize and analyze the activatedfaults. In this protocol, an activated fault results in one or more error types which are Boundary violation, Conflict, Content, Freeze, Synchronization, and Syntax. To study the activated faults, a FlexRay bus network, composed of four nodes, was modeled by Verilog HDL; and a total of 135,600 transient faults were injected in only one node, where 9,342 (6.9%) of the faults were activated. The results show that the Synchronization error is... 

    Investigation and reduction of fault sensitivity in the FlexRay communication controller registers

    , Article 27th International Conference on Computer Safety, Reliability, and Security, SAFECOMP 2008, Newcastle upon Tyne, 22 September 2008 through 25 September 2008 ; Volume 5219 LNCS , 2008 , Pages 153-166 ; 03029743 (ISSN); 3540876979 (ISBN); 9783540876977 (ISBN) Sedaghat, Y ; Miremadi, S. G ; Sharif University of Technology
    2008
    Abstract
    It is now widely believed that FlexRay communication protocol will become the de-facto standard for distributed safety-critical automotive systems. In this paper, the fault sensitivity of the FlexRay communication controller registers are investigated using transient single bit-flip fault injection. To do this, a FlexRay bus network, composed of four nodes, was modeled. A total of 135,600 transient single bit-flip faults were injected to all 408 accessible single-bit and multiple-bit registers of the communication controller in one node. The results showed that among all 408 accessible registers, 30 registers were immediately affected by the injected faults. The results also showed that... 

    A software-based error detection technique using encoded signatures

    , Article 2006 21st IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, Arlington, VA, 4 October 2006 through 6 October 2006 ; 2006 , Pages 389-397 ; 15505774 (ISSN); 076952706X (ISBN); 9780769527062 (ISBN) Sedaghat, Y ; Miremadi, S. G ; Fazeli, M ; Sharif University of Technology
    2006
    Abstract
    In this Paper, a software-based control flow checking technique called SWTES (Software-based error detection Technique using Encoded Signatures) is presented and evaluated. This technique is processor independent and can be applied to any kind of processors and microcontrollers. To implement this technique, the program is partitioned to a set of blocks and the encoded signatures are assigned during the compile time. In the run-time, the signatures are compared with the expected ones by a monitoring routine. The proposed technique is experimentally evaluated on an ATMEL MCS51 microcontroller using Software Implemented Fault Injection (SWIFI). The results show that this technique detects about... 

    Assessment of message missing failures in CAN-based systems

    , Article IASTED International Conference on Parallel and Distributed Computing and Networks, as part of the 23rd IASTED International Multi-Conference on Applied Informatics, Innsbruck, 15 February 2005 through 17 February 2005 ; 2005 , Pages 387-392 ; 10272666 (ISSN) Salmani, H ; Miremadi, S. G ; Fahringer T ; Hamza M. H ; Sharif University of Technology
    2005
    Abstract
    This paper presents a simulation-based environment to study fault effects in message missing failures in CAN-based systems. A CAN controller is modeled by VHDL at behavioral level and is exploited to set up a network composed of several nodes. A total of 27,000 transient faults of seven types are injected into five critical portions of the system including the bus and four portions of the CAN controller. The experimental results show that the faults affect the message sending in which more than 20% of faults cause the failure. Besides, with a heavy workload, faults that are occurred into the CAN controller and on the bus cause about 90% and 10% of all failures, respectively  

    Feature specific control flow checking in COTS-based embedded systems

    , Article Proceedings - 3rd International Conference on Dependability, DEPEND 2010, 18 July 2010 through 25 July 2010 ; July , 2010 , Pages 58-63 ; 9780769540900 (ISBN) Rajabzadeh, A ; Miremadi, S.G ; IARIA ; Sharif University of Technology
    2010
    Abstract
    While the Control Flow Checking (CFC) methods are using the ordinary instruction set and general Arithmetic and Logic Unit (ALU) features to protect the programs against the transient faults, this paper presents a new kind of CFC method, called feature specific CFC. The idea behind this method is using a specific internal hardware in modern processors which provides the ability to monitor internal various parameters of the program. This method is a pure software method and the external hardware overhead is zero. Other overheads have been measured experimentally by executing the workloads on a Pentium system. The execution time overhead is between 42% and 67% and the program size overhead is... 

    Error detection enhancement in COTS superscalar processors with performance monitoring features

    , Article Journal of Electronic Testing: Theory and Applications (JETTA) ; Volume 20, Issue 5 SPEC.ISS , 2004 , Pages 553-567 ; 09238174 (ISSN) Rajabzadeh, A ; Miremadi, S. G ; Mohandespour, M ; Sharif University of Technology
    2004
    Abstract
    Increasing use of commercial off-the-shelf (COTS) superscalar processors in industrial, embedded, and real-time systems necessitates the development of error detection mechanisms for such systems. This paper presents an error detection scheme called Committed Instructions Counting (CIC) to increase error detection in such systems. The scheme uses internal Performance Monitoring features and an external watchdog processor (WDP). The Performance Monitoring features enable counting the number of committed instructions in a program. The scheme is experimentally evaluated on a 32-bit Pentium® processor using software implemented fault injection (SWIFI). A total of 8181 errors were injected into... 

    Complement routing: A methodology to design reliable routing algorithm for network on chips

    , Article Microprocessors and Microsystems ; Volume 34, Issue 6 , 2010 , Pages 163-173 ; 01419331 (ISSN) Patooghy, A ; Miremadi, S. G ; Sharif University of Technology
    Abstract
    Use of deep sub-micron VLSI technologies in fabrication of Network on Chips (NoCs) makes the reliability to be one of the first order concerns in the design of these products. This paper proposes and evaluates a methodology that adds reliability to NoC routing algorithms with minimal power and performance overheads. The key idea behind this methodology is to use the concept of complement routing in which two routing algorithms with disjoint sets of allowed turns are incorporated. According to this methodology, while a packet is routed by a routing algorithm, a redundant copy of that packet is routed by the complement of that routing algorithm. This is done by exploiting channels with lower... 

    A comprehensive analysis on the resilience of adiabatic logic families against transient faults

    , Article Integration ; Volume 72 , May , 2020 , Pages 183-193 Narimani, R ; Safaei, B ; Ejlali, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    With the emergence of various battery operated technologies in different computing domains and the challenge of heating in such technologies, the issue of energy dissipation has become more critical than ever before. In such systems, energy constraints in one hand, and heat generation, on the other hand, necessitates the employment of energy efficient technologies in the fabrication of digital circuits. One possible solution for mitigating the energy dissipation in digital circuits is the use of adiabatic families in the process of designing computing devices. Adiabatic circuits are designed mainly based on the principles of thermodynamics and provide a paradigm shift in the design of...