Loading...
Search for: fault-tolerant-control
0.005 seconds
Total 33 records

    Adaptive integrated guidance and fault tolerant control using backstepping and sliding mode

    , Article International Journal of Aerospace Engineering ; Volume 2015 , September , 2015 ; 16875966 (ISSN) Jegarkandi, M. F ; Ashrafifar, A ; Mohsenipour, R ; Sharif University of Technology
    Hindawi Publishing Corporation  2015
    Abstract
    A new method of integrated guidance and control for homing missiles with actuator fault against manoeuvring targets is proposed. Model of the integrated guidance and control system in the pitch plane with actuator fault and some uncertainty is developed. A control law using combination of adaptive backstepping and sliding mode approaches is designed to achieve interception in the presence of bounded uncertainties and actuator fault. Simulation results show that new approach has better performance than adaptive backstepping and has good performance in the presence of actuator fault  

    A diversity based reconfigurable method for fault tolerant control of induction motors

    , Article International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006. SPEEDAM 2006, Taormina, 23 May 2006 through 26 May 2006 ; Volume 2006 , 2006 , Pages 66-71 ; 1424401941 (ISBN); 9781424401949 (ISBN) Tahami, F ; Shojaei, A ; Ahmadi Khatir, D ; Sharif University of Technology
    2006
    Abstract
    AC motor drive systems are sensitive to faults occurring at the power inverter, or at the control system. A novel fault tolerant Field Oriented Control system for induction motors is introduced. The system maintains speed control in the event of sensors malfunction and adverse signal conditions, providing enhanced reliability. The system comprises four different flux estimators which are fused by a Fuzzy aggregation system in order to give a reliable estimate of motor flux. The proposed control system is an effective and easy to implement method giving a potential for motor drive reliability enhancement. © 2006 IEEE  

    A sensor fault tolerant drive for interior permanent-magnet synchronous motors

    , Article 2008 IEEE 2nd International Power and Energy Conference, PECon 2008, Johor Baharu, 1 December 2008 through 3 December 2008 ; January , 2008 , Pages 283-288 ; 9781424424054 (ISBN) Tahami, F ; Nademi, H ; Rezaei, M ; Sharif University of Technology
    2008
    Abstract
    The study reported in this paper deals with the problem of developing a controller with tolerance to current sensor faults. To achieve this goal, two control strategies are considered. In the first method, field oriented control and a developed observer are used in case of no fault. The second approach is concerned with fault tolerant strategy based on an observer for faulty conditions. Current sensors failures are detected and the current will be estimated successfully in order to allow continuous operation of the vector control. Based on the motor model, currents can be estimated using a nonlinear observer. A decoupling current vector control strategy is developed to ensure high... 

    A unified framework for passive–active fault-tolerant control systems considering actuator saturation and L∞ disturbances

    , Article International Journal of Control ; 2017 , Pages 1-11 ; 00207179 (ISSN) Khatibi, M ; Haeri, M ; Sharif University of Technology
    Abstract
    This paper presents a unified passive–active fault-tolerant control strategy to compensate the loss of actuators’ effectiveness. The proposed approach is capable of handling the system in pre- and post-fault diagnosis intervals by passive and active approaches, respectively. The stability of the designed system is independent of the accuracy of information provided by the fault detection and diagnosis unit, however, a precise estimation could improve the conservation. Actuator saturation and L∞ disturbances effects are considered in the design stage. The trade-off between maximising the domain of attraction and minimising the effects of L∞ disturbances is tackled by developing a non-constant... 

    A unified framework for passive–active fault-tolerant control systems considering actuator saturation and L ∞ disturbances

    , Article International Journal of Control ; Volume 92, Issue 3 , 2019 , Pages 653-663 ; 00207179 (ISSN) Khatibi, M ; Haeri, M ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Abstract
    This paper presents a unified passive–active fault-tolerant control strategy to compensate the loss of actuators’ effectiveness. The proposed approach is capable of handling the system in pre- and post-fault diagnosis intervals by passive and active approaches, respectively. The stability of the designed system is independent of the accuracy of information provided by the fault detection and diagnosis unit, however, a precise estimation could improve the conservation. Actuator saturation and L ∞ disturbances effects are considered in the design stage. The trade-off between maximising the domain of attraction and minimising the effects of L ∞ disturbances is tackled by developing a... 

    Comparing the performance of reference trajectory management and controller reconfiguration in attitude fault tolerant control

    , Article 2017 Asia Conference on Mechanical and Aerospace Engineering, ACMAE 2017, 29 December 2017 through 31 December 2017 ; Volume 151 , 2018 ; 2261236X (ISSN) Moradi, R ; Alikhani, A ; Jegarkandi, M. F ; Sharif University of Technology
    EDP Sciences  2018
    Abstract
    Reference trajectory management is a method to modify reference trajectories for the faulty system. The modified reference trajectories define new maneuvers for the system to retain its pre-fault dynamic performance. Controller reconfiguration is another method to handle faults in the system, for instance by adjusting the controller parameters (coefficients). Both of these two methods have been considered in the literature and are proven to be capable of handling various faults. However, the comparison of these two methods has not been considered sufficiently. In this paper, a controller reconfiguration mechanism and a reference trajectory management are proposed for the spacecraft attitude... 

    Design of a fault tolerated intelligent cntrol system for a nuclear reactor power control: Using extended Kalman filter

    , Article Journal of Process Control ; Vol. 24, issue. 7 , 2014 , pp. 1076-1084 ; ISSN: 09591524 Hatami, E ; Salarieh, H ; Vosoughi, N ; Sharif University of Technology
    Abstract
    In this paper an approach based on system identification is used for fault detection in a nuclear reactor. A continuous-time Extended Kalman Filter (EKF) is presented, which allows the parameters of the nonlinear system to be estimated. Also a fault tolerant control system is designed for the nuclear reactor during power changes operation. The proposed controller is an adaptive critic-based neuro-fuzzy controller. Performance of the controller in terms of transient response and robustness against failures is very good and considerable  

    Design of a fault tolerated intelligent control system for load following operation in a nuclear power plant

    , Article International Journal of Electrical Power and Energy Systems ; Volume 78 , 2016 , Pages 864-872 ; 01420615 (ISSN) Hatami, E ; Vosoughi, N ; Salarieh, H ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Fault detection has always an important role in maintaining the system stability and assuring satisfactory and safe operation. In this paper a method based on system identification is used for fault detection on a nuclear reactor. The combination of Extended Kalman Filter and recursive Least Square are used to identify the system parameters. Another goal of this paper is design of a fault tolerant control system for a nuclear reactor during power change operation. The proposed controller is an adaptive neuro-fuzzy controller based on emotional learning. Performance of the controller in term of transient response and robustness against failure is very good and outstanding  

    Fault-tolerant control considering time-varying bounds on faults

    , Article Transactions of the Institute of Measurement and Control ; Volume 40, Issue 10 , 2018 , Pages 2982-2990 ; 01423312 (ISSN) Khatibi, M ; Haeri, M ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    This paper presents a novel fault-tolerant control strategy to compensate the time-varying loss of actuators’ effectiveness. It considers intermediate situations where the fault is not determined precisely (unlike active approaches) but overall estimations about its rate and final value are available through the previous experiences and/or experiments. Based on the estimations, two upper and lower time-varying bounds on the actuators’ effectiveness are established to be exploited in the procedure of controller design. In a special case, where these bounds are constant, the method will be reduced to the conventional passive approach. Also, actuator saturation and the effects of (Formula... 

    Fault-tolerant control of flexible satellite with magnetic actuation and reaction wheel

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; 2021 ; 09544100 (ISSN) Hajkarim, M. H ; Assadian, N ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    The attitude fault-tolerant control of a flexible satellite actuated by reaction wheels and magnetic torquer bars is investigated in this article. A low earth orbit is considered for moment perturbations such as drag and gravity gradient. Furthermore, the flexible panels attached to a rigid central body are modeled through the assumed mode approach by a finite set of bending modal motion. The ordinary differential equations of their generalized coordinates are found using Lagrange’s equation, and the resulting dynamical model is validated by comparing its simulation results to the NX Siemens software results. Finally, a fault-tolerant controller based on sliding mode control is suggested and... 

    Fault-tolerant control of flexible satellite with magnetic actuation and reaction wheel

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Volume 236, Issue 6 , 2022 , Pages 1222-1238 ; 09544100 (ISSN) Hajkarim, M. H ; Assadian, N ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    The attitude fault-tolerant control of a flexible satellite actuated by reaction wheels and magnetic torquer bars is investigated in this article. A low earth orbit is considered for moment perturbations such as drag and gravity gradient. Furthermore, the flexible panels attached to a rigid central body are modeled through the assumed mode approach by a finite set of bending modal motion. The ordinary differential equations of their generalized coordinates are found using Lagrange’s equation, and the resulting dynamical model is validated by comparing its simulation results to the NX Siemens software results. Finally, a fault-tolerant controller based on sliding mode control is suggested and... 

    Fault-Tolerant control of uncertain linear systems in the presence of L∞ disturbances and actuator saturation

    , Article 4th International Conference on Control, Instrumentation, and Automation, 27 January 2016 through 28 January 2016 ; 2016 , Pages 307-312 ; 9781467387040 (ISBN) Khatibi, M ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    In this paper the fault-Tolerant control problem for uncertain linear systems in the presence of L, disturbances and actuator saturation is studied. The conflict between enlarging the domain of attraction and attenuating the effect of L, disturbances is tackled by proposing a non-constant state feedback controller. The feedback gains are calculated off-line by using linear matrix inequalities. In addition, the proposed method is capable of tolerating time-varying faults. The suggested approach is implemented on a sample model and the result is compared with other works  

    Fault-tolerant five-leg converter topology with FPGA-Based reconfigurable control

    , Article IEEE Transactions on Industrial Electronics ; Volume 60, Issue 6 , 2013 , Pages 2284-2294 ; 02780046 (ISSN) Shahbazi, M ; Poure, P ; Saadate, S ; Zolghadri, M. R ; Sharif University of Technology
    2013
    Abstract
    Fast fault detection and reconfiguration of power converters is necessary in electrical drives to prevent further damage and to make the continuity of service possible. On the other hand, component minimized converters may provide the benefits of higher reliability and less volume and cost. In this paper, a new fault-tolerant converter topology is studied. This converter has five legs before the fault occurrence, and after fault detection the converter continues to function with four legs. A very fast fault detection and reconfiguration scheme is presented and studied. Simulations and experimental tests are performed to evaluate the structure requirements, the digital reconfigurable... 

    Fault-tolerant predictive trajectory tracking of an air vehicle based on acceleration control

    , Article IET Control Theory and Applications ; Volume 14, Issue 5 , 2020 , Pages 750-762 Emami, S. A ; Banazadeh, A ; Sharif University of Technology
    Institution of Engineering and Technology  2020
    Abstract
    A novel fault-tolerant model predictive control (MPC)-based trajectory tracking approach for an aerial vehicle is presented in this study. A generalised online sequential extreme learning machine is introduced first to identify the corresponding coefficients of actuator faults. Subsequently, a robust trajectory tracking control is developed based on MPC, where the system constraints can be effectively considered in the designed control scheme. Trajectory tracking control is achieved by controlling only the acceleration of the aerial robot in the MPC structure. This leads to less computational burden and faster closed-loop dynamics. In addition, an effective disturbance observer is employed,... 

    Intelligent trajectory tracking of an aircraft in the presence of internal and external disturbances

    , Article International Journal of Robust and Nonlinear Control ; Volume 29, Issue 16 , 2019 , Pages 5820-5844 ; 10498923 (ISSN) Emami, A ; Banazadeh, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    This research deals with developing an intelligent trajectory tracking control approach for an aircraft in the presence of internal and external disturbances. Internal disturbances including actuators faults, unmodeled dynamics, and model uncertainties as well as the external disturbances such as wind turbulence significantly affect the performance of the common trajectory tracking control approaches. There are several fault-tolerant control approaches in the literature to overcome the effects of specific actuator or sensor faults during the flight. However, trajectory tracking control of an air vehicle in the presence of unexpected faults and simultaneous presence of wind turbulence is... 

    Multi-objective optimization in graceful performance degradation and its application in spacecraft attitude fault-tolerant control

    , Article Aerospace Science and Technology ; Volume 69 , 2017 , Pages 465-473 ; 12709638 (ISSN) Moradi, R ; Alikhani, A ; Fathi Jegarkandib, M. F ; Sharif University of Technology
    Abstract
    Reducing the burden of the remaining actuators through decreasing the performance gracefully is an important field in active fault tolerant control. According to the literature, two important points have been identified in the works considering graceful performance degradation: 1) using single-objective optimization, 2) assuming an engineering insight into the performance of the faulty system. This paper has two contributions: First, it is shown that in some cases, single-objective optimization may not be able to provide a satisfactory solution for the problem. Second, a new systematic and general method is proposed to remove the need for the engineering insight. The proposed method is based... 

    Post fault vector control of an induction motor fed by a chb inverter

    , Article 10th International Power Electronics, Drive Systems and Technologies Conference, PEDSTC 2019, 12 February 2019 through 14 February 2019 ; Pages 149-154 , 2019 ; 9781538692547 (ISBN) Fathi, M ; Zolghadri, M ; Ouni, S ; Babaloo, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, a new post-fault vector control of an induction motor, fed by a faulty Cascaded H-Bridge (CHB) inverter, is presented. Among fault tolerant control methods, waveform based methods are suitable for closed-loop control and provide higher output voltage. In order to control the speed of the motor, a rotor field oriented control (RFOC) is used. During the fault, the FOC is modified to decrease the fault impact on the motor as low as possible. The proposed method is validated by means of simulation results for different loads and faults. The results show an improvement in both the final operating point and the transient response of the motor  

    Predictive fault-tolerant control of an all-thruster satellite in 6-DOF motion via neural network model updating

    , Article Advances in Space Research ; Volume 61, Issue 6 , March , 2018 , Pages 1588-1599 ; 02731177 (ISSN) Tavakoli, M. M ; Assadian, N ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    The problem of controlling an all-thruster spacecraft in the coupled translational-rotational motion in presence of actuators fault and/or failure is investigated in this paper. the nonlinear model predictive control approach is used because of its ability to predict the future behavior of the system. The fault/failure of the thrusters changes the mapping between the commanded forces to the thrusters and actual force/torque generated by the thruster system. Thus, the basic six degree-of-freedom kinetic equations are separated from this mapping and a set of neural networks are trained off-line to learn the kinetic equations. Then, two neural networks are attached to these trained networks in... 

    Reducing the effects of inaccurate fault estimation in spacecraft stabilization

    , Article Journal of Aerospace Technology and Management ; Volume 9, Issue 4 , 2017 , Pages 453-460 ; 19849648 (ISSN) Moradi, R ; Alikhani, A ; Fathi Jegarkandi, M ; Sharif University of Technology
    Abstract
    Reference Governor is an important component of Active Fault Tolerant Control. One of the main reasons for using Reference Governor is to adjust/modify the reference trajectories to maintain the stability of the post-fault system, especially when a series of actuator faults occur and the faulty system can not retain the pre-fault performance. Fault estimation error and delay are important properties of Fault Detection and Diagnosis and have destructive effects on the performance of the Active Fault Tolerant Control. It is shown that, if the fault estimation provided by the Fault Detection and Diagnosis (initial “fault estimation”) is assumed to be precise (an ideal assumption), the... 

    Robust adaptive fault-tolerant control for leader-follower flocking of uncertain multi-agent systems with actuator failure

    , Article ISA Transactions ; Volume 71 , 2017 , Pages 227-234 ; 00190578 (ISSN) Yazdani, S ; Haeri, M ; Sharif University of Technology
    Abstract
    In this work, we study the flocking problem of multi-agent systems with uncertain dynamics subject to actuator failure and external disturbances. By considering some standard assumptions, we propose a robust adaptive fault tolerant protocol for compensating of the actuator bias fault, the partial loss of actuator effectiveness fault, the model uncertainties, and external disturbances. Under the designed protocol, velocity convergence of agents to that of virtual leader is guaranteed while the connectivity preservation of network and collision avoidance among agents are ensured as well. © 2017 ISA