Loading...
Search for: field-effect-transistor
0.008 seconds
Total 72 records

    Modeling of a vertical tunneling transistor based on Gr-hBN- χ 3borophene heterostructure

    , Article Journal of Applied Physics ; Volume 132, Issue 3 , 2022 ; 00218979 (ISSN) Abbasi, R ; Faez, R ; Horri, A ; Moravvej Farshi, M. K ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    We present a computational study on the electrical behavior of the field-effect transistor based on vertical graphene-hBN- χ 3 borophene heterostructure and vertical graphene nanoribbon-hBN- χ 3 borophene nanoribbon heterostructure. We use nonequilibrium the Green function formalism along with an atomistic tight-binding (TB) model. The TB parameters are calculated by fitting tight-binding band structure and first-principle results. Also, electrical characteristics of the device, such as ION/IOFF ratio, subthreshold swing, and intrinsic gate-delay time, are investigated. We show that the increase of the hBN layer number decreases subthreshold swing and degrades the intrinsic gate-delay time.... 

    Self-assembly, stability, and photoresponse of PbS quantum dot films capped with mixed halide perovskite ligands

    , Article Materials Research Bulletin ; Volume 147 , 2022 ; 00255408 (ISSN) Aynehband, S ; Mohammadi, M ; Poushimin, R ; Azar, M. H ; Nunzi, J. M ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    The type of passivating ligands and the ligand exchange method influence the quality of lead sulfide quantum dot films. This imparts on the efficiency of optoelectronic devices. To get a compact arrangement of the nanocrystals in a thin film (⁓100 nm) via self-assembling, we used organic-inorganic perovskites with mixed halides for the solid-state exchange of oleic acid ligands on PbS QDs (⁓ 4 nm). Formamidinium lead halides FAPbIxBr3-x (x= 3,2,1,0) were used. X-ray spectroscopy shows that successful replacement of oleic acid with FA happens by short immersion of the films (2 min) in the solution. Transmission electron microscopy shows that nano-scale cracks, short-range ordering, and fusion... 

    GNRFET with superlattice source, channel, and drain: SLSCD-GNRFET

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 131 , 2021 ; 13869477 (ISSN) Behtoee, B ; Faez, R ; Shahhoseini, A ; Moravvej Farshi, M. K ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    We are proposing a next-generation graphene nanoribbon field-effect transistor (GNRFET) with superlattice source, channel, and drain (SLSCD-GNRFET), with significantly improved switching performance. The presence of superlattice in each region is for energy filtering. The simulation results indicate that the addition of an appropriate superlattice in the channel region, it reduces the subthreshold swing. Also, using proper superlattice in the drain region leads to an increase of more than a decade in the ION/IOFF ratio by intensely reducing the OFF-current. These improvements make the proposed transistor potentially suitable for the next-generation logical digital applications. Comparison of... 

    Low-power high-speed phase frequency detector based on carbon nano-tube field effect transistors

    , Article Analog Integrated Circuits and Signal Processing ; 2021 ; 09251030 (ISSN) Soltani Mohammadi, M ; Sadughi, S ; Razaghian, F ; Sharif University of Technology
    Springer  2021
    Abstract
    A phase frequency detector (PFD) with a very low dead zone is proposed which is based on a configuration adaptable to both CMOS or carbon nano-tube transistors (CNTFETs). In the first step the proposed configuration is designed using CMOS transistors, and then CNTFETs are substituted to improve the speed and reduce the propagation delay. The proposed PFD in addition to very low dead zone, has low power consumption and high frequency range of operation, which are achieved as a result of the elimination of the reset path. The simulation results based on 32 nm technology for CNTFET and 180 nm technology for CMOS, illustrate that CNTFET-based proposed circuit dissipates 2 µW and has frequency of... 

    Using superlattice structure in the source of GNRFET to improve its switching performance

    , Article IEEE Transactions on Electron Devices ; Volume 67, Issue 3 , 2020 , Pages 1334-1339 Behtoee, B ; Faez, R ; Shahhoseini, A ; Moravvej Farshi, M. K ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Our aim is to improve the switching performance of the graphene nanoribbon field-effect transistors (GNRFETs), exploiting the concept of energy filtering. Within the proposed scheme, a superlattice (SL) structure is used in the source of the transistor for filtering high-energy electron tail by engineering the density of states (DOS). According to simulation results, this can significantly decrease the OFF-current and the subthreshold swing (SS). A comparison of the proposed device with a conventional GNRFET and a graphene nanoribbon (GNR) tunneling field-effect transistor (GNRTFET) demonstrates a significant improvement. Therefore, a typical SL-GNRFET can reduce the average and the minimum... 

    Local impact of Stone–Wales defect on a single layer GNRFET

    , Article Physics Letters, Section A: General, Atomic and Solid State Physics ; Volume 384, Issue 7 , 2020 Shamloo, H ; Nazari, A ; Faez, R ; Shahhoseini, A ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this work, a new structure of single layer armchair graphene nanoribbon field effect transistor with the Stone–Wales (SW) defect (SWGNRFET) is studied. The simulations are solved with Poisson–Schrödinger equation self-consistently by using Non-Equilibrium Green Function (NEGF) and in the real space approach. The energy band structure is obtained by approximation tight-binding method. The results show that displacement of a defect in the width of the channel of the new structure is led to 50% increase in ION/IOFF ratio only by rotating of a C–C (Carbon–Carbon) bond with similar behavior. But, a remarkable increase of 300% in ION/IOFF ratio is obtained by a “dual center” defect. The results... 

    Extended-gate field-effect transistor based sensor for detection of hyoscine n-butyl bromide in its pharmaceutical formulation

    , Article Analytical and Bioanalytical Electrochemistry ; Volume 12, Issue 2 , 2020 , Pages 238-249 Sheibani, S ; Mirzaie, S. I ; Fardmanesh, M ; Norouzi, P ; Sharif University of Technology
    Center of Excellence in Electrochemistry, Univ. of Tehran  2020
    Abstract
    A novel recognition method for selective determination of the hyoscine N-Butyl bromide (HBB), an antispasmodic agent for smooth muscles, was devised using extended gate field-effect transistor (EG-FET) as transducing unit. For this purpose a PVC membrane, containing hyoscine n-butyl-tetraphenyl borate ion-pair as recognition component, was coated on Ag/AgCl wire, which was connected to the extended metal gate. In optimal conditions, the linear range for HBB was 10-8-10-5 molL−1 with limit of detection 1.7×10-9 molL-1. The proposed sensor was applied in real sample, it showed fast response with high accuracy, and therefore it could be used as HPLC detector in the pharmaceutical samples in... 

    Engineered nanopores-based armchair graphene nanoribbon fet with resonant tunneling performance

    , Article IEEE Transactions on Electron Devices ; Volume 66, Issue 12 , 2019 , Pages 5339-5346 ; 00189383 (ISSN) Rahmani, M ; Ahmadi, V ; Faez, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This article presents a novel armchair graphene nanoribbon (AGNR) field-effect transistor with engineered nanopores for resonant tunneling. Two rectangular nanopores are punched to create two potential barriers and one quantum well. Channel and source and drain contacts are AGNR, indicating structure homogeneity. Nonequilibrium Green's function and Poisson's equations are used for structural analysis. The input variables are well width (WW), drain voltage (VD), and barrier width (BW). The effects of repositioning nanopores and AGNR type (i.e., semiconductor and semimetal) are also studied. The impact of the parameters on the density of states, transmission probabilities, peak current (IP)... 

    Low-Frequency model for hand-calculations in circuit design with TMDC-based transistors

    , Article IEEE Transactions on Electron Devices ; Volume 66, Issue 11 , 2019 , Pages 5011-5018 ; 00189383 (ISSN) Omdeh Ghiasi, H ; Safarian, A ; Pourfath, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    This article presents an applicable intuitive current-voltage model for long-channel transistors based on 2-D materials. This model carefully predicts the transistor behavior in the saturation and triode regions, which are important for analog and digital applications. Moreover, the effect of mobility degradation on the characteristics of the transistor is probed. As a case study, the developed model has been applied to a transistor with mono-layer MoS2 as the channel material. The excellent agreement with experimental data verifies the accuracy of the model. Finally, the introduced model has been utilized to design an amplifier, a differential pair, and a low-frequency common source mixer... 

    The highly crystalline tellurium doped ZnO nanowires photodetector

    , Article Journal of Crystal Growth ; Volume 522 , 2019 , Pages 214-220 ; 00220248 (ISSN) Khosravi Nejad, F ; Teimouri, M ; Jafari Marandi, S ; Shariati, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this paper, the stable and reproducible tellurium doped ZnO nanowires (Te-ZnO NWs) photodetector with intensive responsively is presented. The Te-ZnO NWs were fabricated by physical vapor deposition (PVD) growth mechanism. Field emission scanning electron microscope (FESEM) images showed that the fabricated nanowires were 50 nm in diameter and several microns in length. The high resolution transmission electron microscopy indicated that the synthesized nanowires were crystalline and their phase characterization was validated by the X-ray diffraction (XRD). The photoluminescence (PL) studies of these nanowires showed a strong photoluminescence (PL) emission peak in the green region. It was... 

    On the performance of vertical MoS2 nanoflakes as a gas sensor

    , Article Vacuum ; Volume 167 , 2019 , Pages 90-97 ; 0042207X (ISSN) Barzegar, M ; Iraji zad, A ; Tiwari, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Despite their potential applications, a limited number of studies for synthesizing vertical MoS2 nanoflakes especially via CVD have been reported so far, which generally involve tedious complex- and/or multi-step growth processes. In this study, direct synthesis of vertical MoS2 nanoflakes grown on the SiO2/Si substrate during a rapid sulfidation process by CVD method has been reported. Material characterization was performed using Raman spectroscopy, XRD and FE-SEM. The XRD results indicated the dominant phase of 2H–MoS2 within the synthesized layers. The characteristic distance between the two dominant peaks of E1 2g and A1g in the Raman spectra confirms the multi-layered structure for... 

    Phase transition and field effect topological quantum transistor made of monolayer MoS2

    , Article Journal of Physics Condensed Matter ; Volume 30, Issue 23 , 2018 , May ; 09538984 (ISSN) Simchi, H ; Simchi, M ; Fardmanesh, M ; Peeters, F. M ; Sharif University of Technology
    Institute of Physics Publishing  2018
    Abstract
    We study topological phase transitions and topological quantum field effect transistor in monolayer molybdenum disulfide (MoS2) using a two-band Hamiltonian model. Without considering the quadratic (q 2) diagonal term in the Hamiltonian, we show that the phase diagram includes quantum anomalous Hall effect, quantum spin Hall effect, and spin quantum anomalous Hall effect regions such that the topological Kirchhoff law is satisfied in the plane. By considering the q 2 diagonal term and including one valley, it is shown that MoS2 has a non-Trivial topology, and the valley Chern number is non-zero for each spin. We show that the wave function is (is not) localized at the edges when the q 2... 

    Two-dimensional materials for gas sensors: from first discovery to future possibilities

    , Article Surface Innovations ; Volume 6, Issue 4-5 , 2018 , Pages 205-230 ; 20506252 (ISSN) Barzegar, M ; Tudu, B ; Sharif University of Technology
    ICE Publishing  2018
    Abstract
    Semiconductor gas sensors have been developed so far on empirical bases, but now recent innovative materials for advancing gas sensor technology have been made available for further developments. Two-dimensional (2D) materials have gained immense attention since the advent of graphene. This attention inspired researchers to explore a new family of potential 2D materials. The superior structural, mechanical, optical and electrical properties of 2D materials made them attractive for next-generation smart device applications. There are considerable improvements and research studies on graphene, molybdenum disulfide (MoS2), tungsten disulfide (WS2), tin sulfide (SnS2), black phosphorus and other... 

    The field effect transistor DNA biosensor based on ITO nanowires in label-free hepatitis B virus detecting compatible with CMOS technology

    , Article Biosensors and Bioelectronics ; Volume 105 , 15 May , 2018 , Pages 58-64 ; 09565663 (ISSN) Shariati, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper the field-effect transistor DNA biosensor for detecting hepatitis B virus (HBV) based on indium tin oxide nanowires (ITO NWs) in label free approach has been fabricated. Because of ITO nanowires intensive conductance and functional modified surface, the probe immobilization and target hybridization were increased strongly. The high resolution transmission electron microscopy (HRTEM) measurement showed that ITO nanowires were crystalline and less than 50 nm in diameter. The single-stranded hepatitis B virus DNA (SS-DNA) was immobilized as probe on the Au-modified nanowires. The DNA targets were measured in a linear concentration range from 1fM to 10 µM. The detection limit of... 

    A computational study of vertical tunneling transistors based on graphene-WS2 heterostructure

    , Article Journal of Applied Physics ; Volume 121, Issue 21 , 2017 ; 00218979 (ISSN) Horri, A ; Faez, R ; Pourfath, M ; Darvish, G ; Sharif University of Technology
    American Institute of Physics Inc  2017
    Abstract
    In this paper, for the first time, we present a computational study on electrical characteristics of field effect tunneling transistors based on a vertical graphene-WS2 heterostructure and vertical graphene nanoribbon (GNR)-WS2 heterostructure (VTGNRFET). Our model uses the nonequilibrium Green's function formalism along with an atomistic tight binding (TB) method. The TB parameters are extracted by fitting the bandstructure to first principles results. We show that, due to the advantage of switching between tunneling and thermionic transport regimes, an improvement can be achieved in the electrical characteristics of the device. We find that the increase of the number of WS2 layers enhances... 

    The ITO-capped WO3 nanowires biosensor based on field-effect transistor in label-free protein sensing

    , Article Applied Physics A: Materials Science and Processing ; Volume 123, Issue 5 , 2017 ; 09478396 (ISSN) Shariati, M ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    The fabrication of ITO-capped WO3 nanowires associated with their bio-sensing properties in field-effect transistor diagnostics basis as a biosensor has been reported. The bio-sensing property for manipulated nanowires elucidated that the grown nanostructures were very sensitive to protein. The ITO-capped WO3 nanowires biosensor showed an intensive bio-sensing activity against reliable protein. Polylysine strongly charged bio-molecule was applied as model system to demonstrate the implementation of materialized biosensor. The employed sensing mechanism was ‘label-free’ and depended on bio-molecule’s intrinsic charge. For nanowires synthesis, the vapor–liquid–solid mechanism was used.... 

    Transformer-feedback dual-band neutralization technique

    , Article IEEE Transactions on Circuits and Systems II: Express Briefs ; Volume 64, Issue 5 , 2017 , Pages 495-499 ; 15497747 (ISSN) Nikandish, G ; Medi, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    A dual-band neutralization technique based on the transformer feedback between the drain and the gate of a transistor is presented. The drain and gate bias lines of the transistor are realized as multiorder LC networks. Transformer coupling between the inductors of the two networks can be used to concurrently neutralize the gate-drain capacitance of the transistor at multiple frequencies. Moreover, these frequencies can be placed close together to achieve wideband neutralization. A proof-of-concept dual-band 27/33-GHz amplifier is designed and implemented in a 0.1-μm GaAs pseudomorphic high-electron mobility transistor process. The maximum gain of the transistor at the two frequency bands is... 

    The beneficial effects of mixing spiro-OMeTAD with n-butyl-substituted copper phthalocyanine for perovskite solar cells

    , Article Electrochimica Acta ; Volume 222 , 2016 , Pages 1417-1423 ; 00134686 (ISSN) Nouri, E ; Wang, Y. L ; Chen, Q ; Xu, J. J ; Dracopoulos, V ; Sygellou, L ; Xu, Z. X ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Perovskite solar cells have been constructed under ambient conditions by using 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) mixed with a small quantity of soluble tetra-n-butyl substituted copper phthalocyanine as hole transporting material. The introduction of the phthalocyanine derivative resulted in an impressive increase of cell efficiency, which changed from 10.4% in the absence to 15.4% in the presence of phthalocyanine. This effect is related to the creation of deep traps in the hole transporting phase which block back-travelling electrons as well as to the improvement of the structural quality of the spiro-OMeTAD film in the presence of... 

    The beneficial effects of mixing spiro-OMeTAD with n-butyl-substituted copper phthalocyanine for perovskite solar cells

    , Article Electrochimica Acta ; 2016 ; 00134686 (ISSN) Nouri, E ; Wang, Y. L ; Chen, Q ; Xu, J. J ; Dracopoulos, V ; Sygellou, L ; Xu, Z. X ; Mohammadi, M. R ; Lianos, P ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Perovskite solar cells have been constructed under ambient conditions by using 2,2',7,7'-Tetrakis-(N,N-di-4-methoxyphenylamino)-9,9'-spirobifluorene (spiro-OMeTAD) mixed with a small quantity of soluble tetra-n-butyl substituted copper phthalocyanine as hole transporting material. The introduction of the phthalocyanine derivative resulted in an impressive increase of cell efficiency, which changed from 10.4% in the absence to 15.4% in the presence of phthalocyanine. This effect is related to the creation of deep traps in the hole transporting phase which block back-travelling electrons as well as to the improvement of the structural quality of the spiro-OMeTAD film in the presence of... 

    A 3D analytical modeling of tri-gate tunneling field-effect transistors

    , Article Journal of Computational Electronics ; Volume 15, Issue 3 , 2016 , Pages 820-830 ; 15698025 (ISSN) Marjani, S ; Hosseini, S. E ; Faez, R ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    In this paper, a three-dimensional (3D) analytical solution of the electrostatic potential is derived for the tri-gate tunneling field-effect transistors (TG TFETs) based on the perimeter-weighted-sum approach. The model is derived by separating the device into a symmetric and an asymmetric double-gate (DG) TFETs and then solving the 2D Poisson’s equation for these structures. The subthreshold tunneling current expression is extracted by numerical integrating the band-to-band tunneling generation rate over the volume of the device. It is shown that the potential distributions, the electric field profile, and the tunneling current predicted by the analytical model are in close agreement with...