Loading...
Search for: finite-difference-time-domain-method
0.013 seconds
Total 43 records

    Utilizing graphene oxide/gold/methylene blue ternary nanocomposite as a visible light photocatalyst for a plasmon-enhanced singlet oxygen generation

    , Article Reaction Kinetics, Mechanisms and Catalysis ; Volume 135, Issue 5 , 2022 , Pages 2851-2865 ; 18785190 (ISSN) Tamtaji, M ; Kazemeini, M ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    In this study, graphene oxide/gold/methylene blue (GO/Au/MB) ternary composites were synthesized and characterized through UV–vis, FTIR, XRD, XPS, SEM, and TEM analyses towards plasmon-enhanced singlet oxygen (1O2) generation. Through using gold nanoparticles and MB photosensitizers, the visible light adsorption capability of GO was enhanced by 115%. Moreover, applying this ternary composite as a photocatalyst under visible light interestingly revealed a drastic step-increase of 14% (i.e., from 9 to 23%) in the conversion of photooxygenation of Anthracene. This behavior was rationalized using finite-difference time-domain (FDTD) simulations which confirms the plasmonic field of gold... 

    Ultra-compact all-optical reversible Feynman gate based on suspended graphene plasmonic waveguides

    , Article Optical and Quantum Electronics ; Volume 54, Issue 5 , 2022 ; 03068919 (ISSN) Safinezhad, A ; Eslami, M. R ; Jafari Jozani, K ; Rezaei, M. H ; Sharif University of Technology
    Springer  2022
    Abstract
    In this paper, we propose a reversible Feynman gate utilizing the interference effect for optical communications and computing. The plasmonic waveguides are created by placing a suspended graphene sheet, held by two SiO2 ridges, 10 nm above the Si ribs. The Finite-difference time-domain (FDTD) method is used to simulate the proposed gate in frequency and time domains. Simulation results show that high extinction ratios as much as (15.12 dB) and 13 dB are achievable at the wavelength of 10 μm for the output bits P and Q, respectively. The device is immune against ± 20% variations in the width of the Si ribs due to fabrication errors and its performance can be controlled by setting the... 

    Tuning of random lasers by means of external magnetic fields based on the Voigt effect

    , Article Optics and Laser Technology ; Volume 47 , April , 2013 , Pages 121-126 ; 00303992 (ISSN) Ghasempour Ardakani, A ; Mahdavi, S. M ; Bahrampour, A. R ; Sharif University of Technology
    2013
    Abstract
    It has been proposed that emission spectrum of random lasers with magnetically active semiconductor constituents can be made tunable by external magnetic fields. By employing the FDTD method, the spectral intensity and spatial distribution of electric field are calculated in the presence of an external magnetic field. It is numerically shown that due to the magneto-optical Voigt effect, the emission spectrum of a semiconductor-based random laser can be made tunable by adjusting the external magnetic field. The effect of magnetic field on the localization length of the laser modes is investigated. It is also shown that the spatial distribution of electric field exhibited remarkable... 

    Tunability of terahertz random lasers with temperature based on superconducting materials

    , Article Journal of Applied Physics ; Volume 112, Issue 4 , 2012 ; 00218979 (ISSN) Ghasempour Ardakani, A ; Bahrampour, A. R ; Mahdavi, S. M ; Hosseini, M ; Sharif University of Technology
    2012
    Abstract
    We theoretically demonstrate the tunabiltiy of terahertz random lasers composed of high temperature superconductor YBCO and ruby layers as active medium. The considered system is a one-dimensional disordered medium made of ruby grain and YBCO. Finite-difference time domain method is used to calculate the emission spectrum and spatial distribution of electric field at different temperatures. Our numerical results reveal that the superconductor based random lasers exhibit large temperature tunability in the terahertz domain. The emission spectrum is significantly temperature dependent, the number of lasing modes and their intensities increase with decreasing temperature. Also, we make some... 

    Time-dependent theory for random lasers in the presence of an inhomogeneous broadened gain medium such as PbSe quantum dots

    , Article Applied Optics ; Volume 52, Issue 6 , 2013 , Pages 1317-1324 ; 1559128X (ISSN) Ardakani, A. G ; Mahdavi, S. M ; Bahrampour, A. R ; Sharif University of Technology
    2013
    Abstract
    Time-dependent model is presented to simulate random lasers in the presence of an inhomogeneous gain medium. PbSe quantum dots (QDs) with an arbitrary size distribution are treated as an inhomogeneous gain medium. By introducing inhomogeneity of the PbSe QDs in polarization, rate, and Maxwell's equations, our model is constructed for a one-dimensional disordered system. By employing the finite difference time-domain method, the governing equations are numerically solved and lasing spectra and spatial distribution of the electric field are calculated. The effect of increasing the pumping rate on the laser characteristics is investigated. The results show that the number of lasing modes and... 

    Three-dimensional finite-difference time-domain analysis of nonlinear self-focusing in air

    , Article 2008 International Symposium on Telecommunications, IST 2008, Tehran, 27 August 2008 through 28 August 2008 ; October , 2008 , Pages 163-168 ; 9781424427512 (ISBN) Rastegarfar, H ; Shishegar, A. A ; Sharif University of Technology
    2008
    Abstract
    Through using a three-dimensional finitedifference time-domain (3D-FDTD) scheme, we analyze nonlinear self-focusing in air as a Kerr medium. For sufficiently intense laser beams, the gaseous medium can behave as a strong positive lens which tends to focus the beam. Our simulations' major focus is on the propagation characteristics of an intense continuous-wave laser beam. Necessary relations have been introduced into the conventional FDTD formulation to account for the nonlinear behavior of air. The results clearly indicate that sufficient amounts of optical intensity may lead to self-focusing immediately in front of the laser aperture. ©2008 IEEE  

    Three-dimensional finite-difference time-domain analysis of gas ionization

    , Article 2008 International Symposium on Telecommunications, IST 2008, Tehran, 27 August 2008 through 28 August 2008 ; October , 2008 , Pages 157-162 ; 9781424427512 (ISBN) Rastegarfar, H ; Shishegar, A. A ; Sharif University of Technology
    2008
    Abstract
    The propagation of intense optical beams in a gas undergoing ionization is analyzed through a threedimensional finite-difference time-domain (3D-FDTD) scheme. The propagation dynamics include the effects of diffraction, nonlinear self-focusing, and ionization. For sufficiently intense optical beams the neutral gas undergoes ionization, generating a plasma which tends to defocus the beam. Balancing of diffraction, plasma defocusing, and nonlinear self-focusing may lead to self-guided results. In this paper, necessary relations have been introduced into the conventional FDTD formulation to account for the nonlinear behaviors. Furthermore, a concurrent utilization of computer memory and disk... 

    Temperature tunable random laser using superconducting materials

    , Article Optics Communications ; Volume 285, Issue 7 , 2012 , Pages 1900-1904 ; 00304018 (ISSN) Ghasempour Ardakani, A ; Hosseini, M ; Bahrampour, A. R ; Mahdavi, S. M ; Sharif University of Technology
    2012
    Abstract
    We propose that spectral intensity of superconductor based random lasers can be made tunable by changing temperature. The two fluid model and wavelength dependent dispersion formula have been employed to describe the optical response of the superconducting materials. Random laser characteristics have been calculated using the one dimensional FDTD method. Our simulation results reveal that the emission spectrum can be manipulated through the ambient temperature of the system. It is observed that transition from metal phase to pure superconducting phase leads to the enhancement of the laser emission. Furthermore, spatial distribution of the fields in one dimensional disordered media is very... 

    Single-site source localisation using scattering data

    , Article IET Radar, Sonar and Navigation ; Volume 12, Issue 2 , February , 2018 , Pages 250-259 ; 17518784 (ISSN) Samizadeh Nikoo, M ; Behnia, F ; Sharif University of Technology
    Institution of Engineering and Technology  2018
    Abstract
    Passive localisation of non-cooperative targets through their electromagnetic emissions is an attractive issue. This localisation task can be carried out using multitude of receiver sites being linked together. This multiplicity, however, brings about difficulties in organising and coordinating the sites. One can even claim that the method is no longer passive considering the necessary communication links between the sites. On the other hand, single-site localisation methods basically overcome these difficulties eliminating the need for inter-site communications. In this study, a single-site localisation method is presented and analysed. This method is applicable to scenarios with a large... 

    Single-channel high-transmission optical band-pass filter based on plasmonic nanocavities

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 37, Issue 8 , 1 August , 2020 , Pages 2329-2337 Najafabadi, M. M ; Vahidi, S ; Ghafoorifard, H ; Valizadeh, M ; Sharif University of Technology
    OSA - The Optical Society  2020
    Abstract
    This paper is concerned with the investigation of an optical band-pass filter based on subwavelength surface plasmon polaritons. The transmission characteristics are numerically analyzed by the finite-difference time-domain method, and simulation results reveal that the structure has a band-pass filtering characteristic. The metal–insulator–metal plasmonic nanostructure is implemented by several vertical rectangular cavities across an optical waveguide. The metal and dielectric materials utilized for the realization of the filter are silver and air, respectively. Furthermore, the performance can be efficiently modified by tuning the geometric parameters such as the cavities’ length and width... 

    Simulation analysis of inverted organic solar cells with grating structure: undesirable effects of high absorption near grating anode

    , Article Optik ; Volume 154 , February , 2018 , Pages 453-458 ; 00304026 (ISSN) Bahrami, A ; Faez, R ; Sharif University of Technology
    Elsevier GmbH  2018
    Abstract
    An inverted organic solar cell (IOSC) with nanograting array as anode of the cell has been simulated and analyzed using a combined electrical and optical approach. We have used finite difference time domain (FDTD) method for optimizing device structure. We have compared the characteristics of the IOSC with grating structure with a reference IOSC without grating structure. As a result, an improvement of 11% and 26% in power conversion efficiency (PCE) and short circuit current (JSC) compared to the reference structure was achieved. An analysis is provided on the origin of reduced fill factor (FF) in the IOSC with grating structure. We also have discussed about disadvantage of using optical... 

    SAR computation of a human head exposed to different mobile headsets using FDTD method

    , Article Progress in Electromagnetics Research Symposium, 27 March 2012 through 30 March 2012 ; 2012 , Pages 1131-1134 ; 15599450 (ISSN) ; 9781934142202 (ISBN) Aminzadeh, R ; Ashiri, M ; Abdolali, A ; Sharif University of Technology
    2012
    Abstract
    Many standards are not considering Specific Absorption Rate (SAR) measurements with the use of mobile headsets.In this paper a simulation of mobile headset effects on a human head is done using FDTD-based platform, SEMCAD-X software.We designed two headset models with different case materials to observe their interaction with a Specific Anthropomorphic Mannequin (SAM) phantom as a human head model.Both headset models are installed in the left ear and the human head is rotated by 30±.As headset communicates via Bluetooth at the frequency of 2.4 GHz, we chose a suitable planar inverted F antenna (PIFA) to use with both the headset models.Spatial peak SAR values averaged over 1 g and 10 g for... 

    Revised guided mode expansion on dispersive photonic media

    , Article Photonic and Phononic Crystal Materials and Devices IX, San Jose, CA, 27 January 2009 through 29 January 2009 ; Volume 7223 , 2009 ; 0277786X (ISSN) Eftekharian, A ; Sodagar, M ; Khoshnegar, M ; Khorasani, S ; Chamanzar, M. R ; Adibi, A ; Sharif University of Technology
    2009
    Abstract
    A novel plane-wave-based approach for analytical treatment of dispersive relation is developed and applied to analyze the behavior of electromagnetic waves in plasmonic-photonic-crystal slabs. Here Drude model is used for describing frequency dependent permittivity of plasma rods in host dielectric medium. In the present work, dispersion relation below and above the light line is calculated approximately by means of Maxwell-Garnett effective medium and Revised Plane Wave Method (RPWM). The eigen-functions are then used in Revised Guided Mode Expansion (RGME) as the set of orthonormal bases. Following this procedure, the accurate band structure is obtained. In these kind of methods there are... 

    Reciprocity condition in synchronously time-periodic bianisotropic materials

    , Article Physical Review B ; Volume 106, Issue 21 , 2022 ; 24699950 (ISSN) Boshgazi, S ; Memarian, M ; Mehrany, K ; Rejaei, B ; Sharif University of Technology
    American Physical Society  2022
    Abstract
    In this paper, a sufficient reciprocity condition for general time-periodic modulated bianisotropic media is extracted from first principles. Reciprocity of various cases of significant importance, including stationary bianisotropic media, time-varying (TV) isotropic media, TV anisotropic media, and TV bianisotropic media, are investigated using this condition. We prove that synchronous time modulation of stationary bianisotropic yet reciprocal media (chiral, pseudochiral, and achiral) does not lead to nonreciprocity, unless the modulation function breaks time reversal symmetry. This is in contrast to recently published research. The theoretical results are validated using in-house finite... 

    Pr–Co co-doped BFO multiferroics nanomaterials for absorber applications

    , Article Ceramics International ; Volume 47, Issue 2 , 2021 , Pages 2144-2154 ; 02728842 (ISSN) Akhtar, M. N ; Yousaf, M ; Baqir, M. A ; Batoo, K. M ; Khan, M. A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Pr and Co co-doped BiFeO3 multiferroics of the following composition BiCoxPrxFe1-2xO3, where (x = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25) were prepared via sol-gel route. XRD, FTIR, SEM, VSM and VNA were used to evaluate the structural, phase, morphological and electromagnetic properties of Pr and Co co-doped multiferroics. All the undoped and Pr–Co co-doped multiferroics were of single rhombohedral phased whereas at higher concentration the orthorhombic structure was present. FTIR analysis exhibited the presence of orthorhombic phase. SEM images revealed that the grains of Pr and Co doped multiferroics are circular and elliptical in shape. Dielectric and electromagnetic properties were... 

    Pr–Co co-doped BFO multiferroics nanomaterials for absorber applications

    , Article Ceramics International ; Volume 47, Issue 2 , 2021 , Pages 2144-2154 ; 02728842 (ISSN) Akhtar, M. N ; Yousaf, M ; Baqir, M. A ; Batoo, K. M ; Khan, M. A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Pr and Co co-doped BiFeO3 multiferroics of the following composition BiCoxPrxFe1-2xO3, where (x = 0.00, 0.05, 0.10, 0.15, 0.20 and 0.25) were prepared via sol-gel route. XRD, FTIR, SEM, VSM and VNA were used to evaluate the structural, phase, morphological and electromagnetic properties of Pr and Co co-doped multiferroics. All the undoped and Pr–Co co-doped multiferroics were of single rhombohedral phased whereas at higher concentration the orthorhombic structure was present. FTIR analysis exhibited the presence of orthorhombic phase. SEM images revealed that the grains of Pr and Co doped multiferroics are circular and elliptical in shape. Dielectric and electromagnetic properties were... 

    Periodic rough surface scattering analysis using spectral FDTD method

    , Article 2010 IEEE International Symposium on Antennas and Propagation and CNC-USNC/URSI Radio Science Meeting - Leading the Wave, AP-S/URSI 2010, 11 July 2010 through 17 July 2010 ; July , 2010 ; 9781424449682 (ISBN) Kianinezhad, A ; Shishegar, A. A ; Sharif University of Technology
    2010
    Abstract
    SFDTD was first introduced as modified Finite Difference Time Domain method by Aminian et al in [1]. They used this method to calculate the TE reflection coefficient for grounded slab and also for periodic array of metallic patches. Later Aminian et al used SFDTD for bandwidth determination of soft and hard ground planes [2] and for determination of permittivity of metamaterials [3]. Yunfei Mao et al also used SFDTD for Solving Oblique incident wave on other kind of patches array [4]  

    Optical bistable switching with Kerr nonlinear materials exhibiting a finite response time in two-dimensional photonic crystals

    , Article Volume 7713 ; Proceedings of SPIE - The International Society for Optical Engineering, 12 April 2010 through 15 April 2010 , 2010 ; 0277786X (ISSN) ; 9780819481863 (ISBN) Naqavi, A ; Monem Haghdoost, Z ; Abediasl, H ; Khorasani, S ; Mehrany, K ; Sharif University of Technology
    Abstract
    Effect of relaxation time on the performance of photonic crystal optical bistable switches based on Kerr nolinearity is discussed. This paper deals with optical pulses with the duration of about 50 ps. In such cases the steady state response of the optical device can be used to approximate the pulse evolution if the nonlinearity is assumed instantaneous, hence analytical solutions such as the coupled mode theory can be used to obtain the time evolution of the electromagnetic fields. However if the relaxation time of the material nonlinear response is also considered, changes in the power levels and in the shape of the hystersis loop is observed. In this case, we use the nonlinear finite... 

    On the power-bandwidth trade-off in bistable photonic switches

    , Article Photonic and Phononic Crystal Materials and Devices IX, San Jose, CA, 27 January 2009 through 29 January 2009 ; Volume 7223 , 2009 ; 0277786X (ISSN) Naqavi, A ; Abediasl, H ; Mehrany, K ; Khorasani, S ; Chamanzar, M. R ; Adibi, A ; Sharif University of Technology
    2009
    Abstract
    Low power operation and high speed have always been desirable in applications such as data processing and telecommunications. While achieving these two goals simultaneously, however, one encounters the well-known powerbandwidth trade-off. This is here discussed in a typical bistable switch based on a two-dimensional photonic crystal with Kerr type nonlinearity. The discussion is supported by the nonlinear finite difference time domain (FDTD) simulation of a direct coupled structure with a home-developed code. Two cases of working near resonant and off- resonant are simulated to compare the power and the speed of the device in the two cases. It is shown that working nearresonance reduces the... 

    Numerical study of random lasing in three dimensional amplifying disordered media

    , Article Optics Communications ; Volume 285, Issue 6 , 2012 , Pages 1314-1322 ; 00304018 (ISSN) Ghasempour Ardakani, A ; Bahrampour, A. R ; Mahdavi, S. M ; Golshani Gharyeh Ali, M ; Sharif University of Technology
    2012
    Abstract
    In this paper, the lasing action in three-dimensional active random systems has been numerically investigated. Here, random systems of spherical dielectric particles imbedded in an active medium are considered. The quasi steady state approximation for the population inversion of the active medium is applied to solve three dimensional governing equations. Results show that when the density of particles increases to an upper limit, the intensity of lasing modes is enhanced. Also, the effects of pumping rate and particle size on the number of lasing modes and their intensity are studied. Lasing threshold of laser modes in different disordered systems is calculated and it is shown that by an...