Search for: finite-element-method
0.013 seconds
Total 1351 records

    Suppression of dynamic pull-in instability in electrostatically actuated strain gradient beams

    , Article 2014 2nd RSI/ISM International Conference on Robotics and Mechatronics, ICRoM 2014 ; 2014 , pp. 155-160 ; ISBN: 9781479967438 Edalatzadeh, M. S ; Vatankhah, R ; Alasty, A ; Sharif University of Technology
    In this paper, vibration suppression of micro-or nano-scale beams subjected to nonlinear distributed electrostatic force is studied. For the sake of precision, we use the beam model derived from strain gradient elasticity theory aimed at prediction of size effect. In addition, the electrostatic force is considered with first order fringing field correction. The continuous model of the strain gradient beam is truncated by using Kantorovich method as a semi-analytical finite element method. A boundary control feedback law is proposed to suppress forced vibrations of the beam. Both measurements and actuations are taken place in the boundary to avoid spillover instabilities. Simulation results... 

    Continuous model for flexural vibration analysis of Timoshenko beams with a vertical edge crack

    , Article Archive of Applied Mechanics ; 2014 ; ISSN: 09391533 Heydari, M ; Ebrahimi, A ; Behzad, M ; Sharif University of Technology
    In this paper, a continuous model for flexural vibration of beams with a vertical edge crack including the effects of shear deformation and rotary inertia is presented. The crack is assumed to be an open-edge crack perpendicular to the neutral plane. A quasi-linear displacement filed is suggested for the beam, and the strain and stress fields are calculated. The governing equation of motion for the beam has been obtained using Hamilton principle. The equation of motion is solved with a modified weighted residual method, and the natural frequencies and mode shapes are obtained. The results are compared to the results of similar model with Euler–Bernoulli assumptions and finite element model... 

    Mixed mode fracture analysis of adiabatic cracks in homogeneous and non-homogeneous materials in the framework of partition of unity and the path-independent interaction integral

    , Article Engineering Fracture Mechanics ; Vol. 131, issue , 2014 , Pp. 100-127 ; ISSN: 00137944 Goli, E ; Bayesteh, H ; Mohammadi, S ; Sharif University of Technology
    In this paper, the path independent interaction integral has been implemented in the framework of the extended finite element method for mixed mode adiabatic cracks under thermo-mechanical loadings particularly in orthotropic non-homogenous materials. The mesh insensitivity and increased accuracy due to the thermal and displacement asymptotic analytical solutions are discussed and the contour independency of the interaction integral is investigated in different examples. Finally, the problem of crack propagation in orthotropic FGM materials under the thermal loading is investigated to assess the accuracy and robustness of proposed approach  

    A different approach to estimate the process parameters in tube hydroforming

    , Article International Journal of Material Forming ; Volume 8, Issue 3 , July , 2015 , pp 355-366 ; ISSN: 19606206 Hashemi, R ; Shirin, M. B ; Einolghozati, M ; Assempour, A ; Sharif University of Technology
    An enhanced unfolding inverse finite element method (IFEM) has been used together with an extended strain-based forming limit diagram (FLD) to develop a fast approach to predict the feasibility of tube hydroforming process of concept part and determine where the failure or defects can occur. In tube hydroforming, the inverse IFEM has been used for estimating the initial length of tube, axial feeding and fluid pressure. The already developed IFEM algorithm used in this study is based on the total deformation theory of plasticity. Although the nature of tube hydroforming is three-dimensional deformation, in this article a modeling technique has been used to perform the computations in... 

    Simulation of orthogonal micro-cutting of FCC materials based on rate-dependent crystal plasticity finite element model

    , Article Computational Materials Science ; Vol. 86, issue , April , 2014 , pp. 79-87 ; ISSN: 09270256 Tajalli, S. A ; Movahhedy, M. R ; Akbari, J ; Sharif University of Technology
    Micro-machining of face centered cubic (FCC) metallic materials is simulated via the theory of rate-dependent crystal plasticity. This approach accounts for slip systems and crystallographic orientations in its constitutive framework in order to accurately model the evolution of localized shear band formed during severe plastic deformation of crystalline materials. Through developing a user-defined subroutine in the ABAQUS/Explicit FE platform, the constitutive model is implemented and used to study the influence of workpiece crystallographic orientation on the cutting and thrust specific energies of the process. Due to the high rate of deformation, mechanical properties of texture can be... 

    Thermo-mechanical stress analysis of thermal barrier coating system considering thickness and roughness effects

    , Article Surface and Coatings Technology ; Vol. 243 , 2014 , pp. 91-99 ; ISSN: 02578972 Moridi, A ; Azadi, M ; Farrahi, G. H ; Sharif University of Technology
    Cast aluminium-silicon alloy, A356.0, is widely used in automotive and aerospace industries because of its outstanding mechanical, physical, and casting properties. Thermal barrier coatings can be applied to combustion chamber to reduce fuel consumption and pollutions and also improve fatigue life of components. The purpose of the present work is to simulate stress distribution of A356.0 under thermo-mechanical cyclic loadings, using a two-layer elastic-visco-plastic model of ABAQUS. The results of stress-strain hysteresis loop are validated by an out of phase thermo-mechanical fatigue test. Different thicknesses from 300 to 800. μm of top coat and also roughness of the interfaces are... 

    An approach to relate shot peening finite element simulation to the actual coverage

    , Article Surface and Coatings Technology ; Vol. 243 , 2014 , pp. 39-45 ; ISSN: 02578972 Gangaraj, S. M. H ; Guagliano, M ; Farrahi, G. H ; Sharif University of Technology
    Coverage is one of the most important parameters which is always used in practice to characterize a shot peening process. At the same time however, it is the most missing parameter in the finite element simulations of this process. This study aims to relate shot peening simulation to the actual coverage that is developed during the process. Accordingly, two important models from literature are re-simulated and their capability to predict an actual coverage is assessed. Results of this study illustrate that full coverage situation is not captured by these models. Thereafter, a random finite element simulation along with a step by step examination of the treated surface is adopted in order to... 

    Noise source reconstruction using ANN and hybrid methods in VVER-1000 reactor core

    , Article Progress in Nuclear Energy ; Vol. 71, issue , 2014 , pp. 232-247 ; ISSN: 01491970 Hosseini, S. A ; Vosoughi, N ; Sharif University of Technology
    The present paper consists of two separate sections. In the first section, the neutron noise source is reconstructed using Artificial Neural Network (ANN) in a typical VVER-1000 reactor core. In the first stage of this section, the neutron noise calculations are performed based on Galerkin Finite Element Method (GFEM). To this end, two types of noise sources including absorber of variable strength and vibrating absorber are considered. As the results of noise calculations, the neutron noise is obtained in the location of detectors. In the second stage, the multilayer perception neural network is developed for reconstruction of the noise source. Complex neutron noises (real and imaginary... 

    On the influence of rolling path change on static recrystallization behavior of commercial purity aluminum

    , Article International Journal of Material Forming ; Vol. 7, issue. 1 , 2014 , pp. 53-63 ; ISSN: 19606206 Koohbor, B ; Sharif University of Technology
    An examination of the influence of rolling path change on the static recrystallization behavior of commercial purity aluminum was performed in the present work. Aluminum strips were cold rolled to a reduction of 50 % under various rolling sequences, i.e. single-pass, double-pass from one direction and with reverse directions, and were then annealed in 290 °C for different durations, while mechanical evaluations such as hardness and tensile tests were used to study the mechanical response of cold deformed and annealed samples. It was indicated that a variation in the recrystallization kinetics of the cold rolled aluminum strips takes place when the rolling path is altered from single to... 

    On the hysteretic behavior of trapezoidally corrugated steel shear walls

    , Article Structural Design of Tall and Special Buildings ; Vol. 23, Issue. 2 , 10 February , 2014 , pp. 94-104 ; ISSN: 15417794 Emami, F ; Mofid, M ; Sharif University of Technology
    At present, corrugated plates have numerous applications such as web of plate girders and aerospace applications. Higher out-of-plane stiffness and initial elastic strength of the corrugated plates compared with flat plates are reasons for consideration. This study investigates the behavior of trapezoidally corrugated steel plate shear walls (TCSPSWs) under monotonic and cyclic loadings. Finite element analyses that include both material and geometric nonlinearities are employed for the examination. The results from finite element analysis are verified through tested specimen findings. Moreover, the behavior of the steel shear walls with the flat infill panels and the corrugated plate infill... 

    Study of the behavior of ultrasonic piezo-ceramic actuators by simulations

    , Article Electronic Materials Letters ; Vol. 10, Issue. 1 , 2014 , pp. 37-42 ; ISSN: 17388090 Abdullah, A ; Pak, A ; Abdullah, M. M ; Shahidi, A ; Malaki, M ; Sharif University of Technology
    In recent years, there has been a growing interest in the simulation and analysis of piezoelectric transducers with the he help of equivalent electrical circuit simulations (EECS). This paper has been devoted to study of such approach for two designed and fabricated ultrasonic sandwich transducers. By using analytical analysis, the dimensions of components of the two piezoelectric transducers were determined for the assumed resonance frequencies of 30 kHz and 40 kHz. Then, by using a two dimensional finite element model, and regarding two different modeling techniques for the transducers and by application of a current source which was connected directly to the piezoelectric pieces of the... 

    Polygonal finite element methods for contact-impact problems on non-conformal meshes

    , Article Computer Methods in Applied Mechanics and Engineering ; Vol. 269 , February , 2014 , pp. 198-221 ; ISSN: 00457825 Biabanaki, S. O. R ; Khoei, A. R ; Wriggers, P ; Sharif University of Technology
    In this paper, a polygonal finite element method is presented for large deformation frictionless dynamic contact-impact problems with non-conformal meshes. The geometry and interfaces of the problem are modeled independent of the background mesh based on the level set method to produce polygonal elements at the intersection of the interface with the regular FE mesh. Various polygonal shape functions are employed to investigate the capability of polygonal-FEM technique in modeling frictionless contact-impact problems. The contact constraints are imposed between polygonal elements produced along the contact surface through the node-to-surface contact algorithm. Several contact-impact problems... 

    Numerical solution of the nonlinear diffusivity equation in heterogeneous reservoirs with wellbore phase redistribution

    , Article Journal of Petroleum Science and Engineering ; Vol. 114 , 2014 , pp. 82-90 ; ISSN: 09204105 Khadivi, K ; Soltanieh, M ; Sharif University of Technology
    We consider the application of the Finite Element Method (FEM) for numerical pressure transient analysis under conditions where no reliable analytical solution is available. Pressure transient analysis is normally based on various analytical solutions of the linear one-dimensional diffusion equation under restrictive assumptions about the formation and its boundaries. For example, the formation is either assumed isotropic or a restrictive a priori assumption is made about its heterogeneity. The wellbore storage effect is also often considered without regard to the possibility of phase redistribution. In many practical situations such restrictions are not justified and analytical solutions do... 

    A timoshenko beam element based on the modified couple stress theory

    , Article International Journal of Mechanical Sciences ; Vol. 79, issue , 2014 , pp. 75-83 ; ISSN: 00207403 Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    Since the classical continuum theory is neither able to evaluate the accurate stiffness nor able to justify the size-dependency of micro-scale structures, the non-classical continuum theories such as the modified couple stress theory have been developed. In this paper, a new comprehensive Timoshenko beam element has been developed on the basis of the modified couple stress theory. The shape functions of the new element are derived by solving the governing equations of modified couple stress Timoshenko beams. Subsequently, the mass and stiffness matrices are developed using energy approach and Hamilton's principle. The formulations of the modified couple stress Euler-Bernoulli beam element... 

    A rate-dependent constitutive equation for 5052 aluminum diaphragms

    , Article Materials and Design ; Vol. 60, Issue 1 , 2014 , pp. 13-20 ; ISSN: 02613069 Hosseini Kordkheili, S. A ; Ashrafian, M. M ; Toozandehjani, H ; Sharif University of Technology
    In this article, both experimental and numerical approaches are conducted to present a constitutive equation for 5052 aluminum diaphragms under quasi-static strain rate loadings. For this purpose the stress-strain curves at different strain rates are obtained using tensile tests. Brittle behavior during tensile tests is observed due to samples thin thicknesses. Employing Johnson-Cook constitutive equation no yields in reasonable agreement with these tensile tests results. Therefore, developing a more suitable constitutive equation for aluminum diaphragms is taken into consideration. This equation is then implemented into the commercial finite element software, ABAQUS, via a developed user... 

    Hot extrusion process modeling using a coupled upper bound-finite element method

    , Article Journal of Manufacturing Processes ; Vol. 16, issue. 2 , 2014 , pp. 233-240 ; ISSN: 15266125 Hosseinabadi, H. G ; Serajzadeh, S ; Sharif University of Technology
    A thermo-mechanical model has been developed for modeling of hot extrusion processes. Accordingly, an admissible velocity field was first proposed by means of stream function method and then, extrusion pressure as well as temperature variations within the metal and the die were predicted employing a combined upper bound and Petrov-Galerkin finite element analysis. In order to evaluate the model predictions, hot extrusion of AA6061-10%SiCp was considered under both isothermal and non-isothermal conditions and the predicted force-displacement diagrams under various extrusion conditions were compared with the experimental ones and reasonable consistency was found between the two sets of results... 

    Vibration and buckling analysis of functionally graded beams using reproducing kernel particle method

    , Article Scientia Iranica ; Vol. 21, Issue 6 , 2014 , pp. 1896-1906 ; e-ISSN : 23453605 Saljooghi, R ; Ahmadian, M. T ; Farrahi, G. H ; Sharif University of Technology
    This paper presents vibration and buckling analysis of functionally graded beams with different boundary conditions, using reproducing kernel particle method (RKPM). Vibration of simple Euler-Bernoulli beam using RKPM is already developed and reported in the literature. Modeling of FGM beams using theoretical method or finite element technique is not evolved with accurate results for power law form of FGM with large power of "n" value so far. Accuracy of the RKPM results is very good and is not sensitive to n value. System of equations of motion is derived using Lagrange's method under the assumption of Euler-Bernoulli beam theory. Boundary conditions of the beam are taken into account using... 

    Analytical distributed non-linear model for symmetric and asymmetric superconducting parallel-coupled microstrip lines

    , Article IET Microwaves, Antennas and Propagation ; Vol. 8, Issue. 6 , 2014 , pp. 429-436 ; ISSN: 1751-8725 Javadzadeh, S. M. H ; Farzaneh, F ; Fardmanesh, M ; Sharif University of Technology
    Superconducting materials are known to produce intermodulation distortion and other non-linear effects. In microstrip structures, the non-linearity depends on the current distribution on the strip which is mainly determined by the geometrical structure of the device. The current distribution in superconducting parallel-coupled microstrip lines is computed by a numerical approach based on a three-dimensional finite element method. This computed current distribution is used to produce a non-linear circuit model for parallel-coupled superconducting lines. A numerical technique based on the harmonic balance approach is used for non-linear analysis of the proposed equivalent circuit. To validate... 

    Effects of preheating temperature and cooling rate on two-step residual stress in thermal barrier coatings considering real roughness and porosity effect

    , Article Ceramics International ; Vol. 40, Issue. 10 , December , 2014 , pp. 15925-15940 ; ISSN: 02728842 Rezvani Rad, M ; Farrahi, G. H ; Azadi, M ; Ghodrati, M ; Sharif University of Technology
    In this research, a finite element model was developed in order to simulate the two-step residual stress distribution of a thermal barrier coating system, considered to be used in diesel engine cylinder head, with a real roughness and real porosity. Two steps including the bond coat and the top coat deposition processes were taken into account. The real geometry of coating layers, including the roughness and the porosity, was also considered based on a scanning electron microscopy image. Then, effects of the convective heat transfer coefficient and initial substrate and substrate/bond coat preheating temperatures on the residual stress were studied. Obtained results illustrate that the... 

    Electromagnetic-thermal design optimization of the brushless doubly fed induction generator

    , Article IEEE Transactions on Industrial Electronics ; Vol. 61, issue. 4 , October , 2014 , PP. 1710-1721 ; ISSN: 02780046 Gorginpour, H ; Oraee, H ; McMahon, R. A ; Sharif University of Technology
    In view of its special features, the brushless doubly fed induction generator (BDFIG) shows high potentials to be employed as a variable-speed drive or wind generator. However, the machine suffers from low efficiency and power factor and also high level of noise and vibration due to spatial harmonics. These harmonics arise mainly from rotor winding configuration, slotting effects, and saturation. In this paper, analytical equations are derived for spatial harmonics and their effects on leakage flux, additional loss, noise, and vibration. Using the derived equations and an electromagnetic-thermal model, a simple design procedure is presented, while the design variables are selected based on...