Loading...
Search for: finite-element-models
0.015 seconds
Total 193 records

    Biophysical implications of lipid bilayer rheometry for mechanosensitive channels

    , Article Proceedings of the National Academy of Sciences of the United States of America ; Vol. 111, Issue. 38 , 2014 , Pages 13864-13869 Bavi, N ; Nakayama, Y ; Bavi, O ; Cox, C. D ; Qin, Q. H ; Martinac, B ; Sharif University of Technology
    Abstract
    The lipid bilayer plays a crucial role in gating of mechanosensitive (MS) channels. Hence it is imperative to elucidate the rheological properties of lipid membranes. Herein we introduce a framework to characterize the mechanical properties of lipid bilayers by combining micropipette aspiration (MA) with theoretical modeling. Our results reveal that excised liposome patch fluorometry is superior to traditional cell-attached MA for measuring the intrinsic mechanical properties of lipid bilayers. The computational results also indicate that unlike the uniform bilayer tension estimated by Laplace's law, bilayer tension is not uniform across the membrane patch area. Instead, the highest tension... 

    A new analysis method of the dry sliding wear process based on the low cycle fatigue theory and the finite element method

    , Article Journal of Materials Engineering and Performance ; Vol. 23, issue. 3 , 2014 , pp. 1096-1106 ; ISSN: 10599495 Abdi, M ; Taheri, A. K ; Bakhtiarydavijani, A ; Sharif University of Technology
    Abstract
    In the present work, a combination of a dynamic explicit finite element model and the low cycle fatigue theory is used to simulate the steady-state abrasive wear occurring between an as-cast eutectoid steel and a carbide-tungsten disk. While the low cycle fatigue theory has been used to model wear in softer non-ferrous alloys, this work shows its applicability and accuracy for use in harder alloys, such as the eutectoid steel used in this research which is strengthened with added chromium. The novelty of this work lies in calculating the Manson-Coffin relation constants from a coupled finite element model with experimental tests instead of the previously used Slip line method. The D... 

    On the influence of rolling path change on static recrystallization behavior of commercial purity aluminum

    , Article International Journal of Material Forming ; Vol. 7, issue. 1 , 2014 , pp. 53-63 ; ISSN: 19606206 Koohbor, B ; Sharif University of Technology
    Abstract
    An examination of the influence of rolling path change on the static recrystallization behavior of commercial purity aluminum was performed in the present work. Aluminum strips were cold rolled to a reduction of 50 % under various rolling sequences, i.e. single-pass, double-pass from one direction and with reverse directions, and were then annealed in 290 °C for different durations, while mechanical evaluations such as hardness and tensile tests were used to study the mechanical response of cold deformed and annealed samples. It was indicated that a variation in the recrystallization kinetics of the cold rolled aluminum strips takes place when the rolling path is altered from single to... 

    Multi-scale modeling of surface effects in nano-materials with temperature-related Cauchy-Born hypothesis via the modified boundary cauchy-born model

    , Article International Journal for Numerical Methods in Engineering ; Vol. 97, issue. 2 , 2014 , pp. 79-110 ; ISSN: 00295981 Khoei, A. R ; Ghahremani, P ; Dormohammadi, H ; Sharif University of Technology
    Abstract
    In nano-structures, the influence of surface effects on the properties of material is highly important because the ratio of surface to volume at the nano-scale level is much higher than that of the macro-scale level. In this paper, a novel temperature-dependent multi-scale model is presented based on the modified boundary Cauchy-Born (MBCB) technique to model the surface, edge, and corner effects in nano-scale materials. The Lagrangian finite element formulation is incorporated into the heat transfer analysis to develop the thermo-mechanical finite element model. The temperature-related Cauchy-Born hypothesis is implemented by using the Helmholtz free energy to evaluate the temperature... 

    3D finite element analysis and experimental validation of constrained groove pressing-cross route as an SPD process for sheet form metals

    , Article International Journal of Advanced Manufacturing Technology ; Volume 73, Issue 9-12 , August , 2014 , Pages 1291-1305 ; ISSN: 02683768 Khodabakhshi, F ; Abbaszadeh, M ; Mohebpour, S. R ; Eskandari, H ; Sharif University of Technology
    Abstract
    A new modification of constrained groove pressing (CGP) process named as constrained groove pressing-cross route (CGP-CR) was suggested for severe plastic deformation (SPD) of sheet form metals with great potential for fabricating high strength nanostructured sheets. This process is based on the conventional CGP process including some modifications. One pass of this process includes eight stages (four corrugation and four flattening) and involves 90° cross-rotation between each two stages. As a result of each CGP-CR pass, a strain magnitude of ∼2.32 is imparted to the sample. To simulate the process, finite element modeling (FEM) was carried out using three-dimensional finite element... 

    Bidirectional behavior of unreinforced masonry walls

    , Article Earthquake Engineering and Structural Dynamics ; Vol. 43, Issue 15 , 1 December , 2014 , pp. 2377-2397 ; ISSN: 00988847 Dolatshahi, K. M ; Aref, A. J ; Yekrangnia, M ; Sharif University of Technology
    Abstract
    Most of the studies related to the modeling of masonry structures have by far investigated either the in-plane (IP) or the out-of-plane (OP) behavior of walls. However, seismic loads mostly impose simultaneous IP and OP demands on load-bearing or shear masonry walls. Thus, there is a need to reconsider design equations of unreinforced masonry walls by taking into account bidirectional effects. The intent of this study is to investigate the bidirectional behavior of an unreinforced masonry wall with a typical aspect ratio under different displacement-controlled loading directions making use of finite element analysis. For this purpose, the numerical procedure is first validated against the... 

    Numerical study of the effects of process parameters on tool life in a cold radial forging process

    , Article Scientia Iranica ; Vol. 21, issue. 2 , 2014 , p. 339-346 Afrasiab, H ; Movahhedy, M. R ; Sharif University of Technology
    Abstract
    Radial forging is an open die forging process used for reducing the diameters of shafts, tubes, stepped shafts and axles, and for creating internal profiles in tubes. Due to very large forging loads, the tool should withstand high stress and wear. Therefore, the success of the forging process depends upon recognition of the die failure factors and optimization of the tool working conditions that enhance tool life. In this study, the effect of process parameters on tool life in the cold radial forging process is investigated using nonlinear three dimensional finite element modeling. Wear and mechanical fatigue are considered as the main modes of tool failure, and a parametric study on the... 

    Numerical analysis (finite element method) of brace effects on the adolescent idiopathic scoliosis during 24 hours

    , Article Biomedical Engineering - Applications, Basis and Communications ; Vol. 26, issue. 3 , June , 2014 ; 10162372 Gohari, E ; Haghpanahi, M ; Parnianpour, M ; Ganjavian, M. S ; Kamyab, M ; Sharif University of Technology
    Abstract
    In the adolescent idiopathic scoliosis (AIS) treatment, a brace is prescribed to the patients who have 20 to 45° curves on their spines to prevent the disorder's advancement. For the analysis of Milwaukee brace effects during time, finite element models (FEMs) of the spine (the thoracolumbar region) and the ribcage (contained 10 pairs of the ribs and the sternum) were prepared for two patients. For modeling the spine part, a new element was used in which a disc (as viscoelastic 3D beam) and a vertebra (as rigid link) were modeled as an element and the ribs and the sternum modeled by 3D elastic beams. The gravity, Milwaukee brace constraints and the forces of the brace's different regions... 

    A study on subsequent static aging and mechanical properties of hot-Rolled AA2017

    , Article Journal of Materials Engineering and Performance ; Vol. 23, issue. 8 , 2014 , p. 2894-2904 Khalili, L ; Serajzadeh, S ; Sharif University of Technology
    Abstract
    In this work, the effects of rolling parameters, cooling media, and deformation path on mechanical properties and aging behavior of hot-rolled AA2017 were studied. First, hot-rolling experiments were conducted under different working conditions, and the rolled strips were then aged at room temperature for up to 57 days during which hardness and tensile tests were carried out to record the changes in the mechanical properties of the alloy. Furthermore, due to the importance of static recrystallization on subsequent aging behavior, the rate of recrystallization was also computed. To this end, a mathematical model was developed to predict thermomechanical responses during hot rolling using the... 

    Analytical investigation on fundamental electrical characteristics of large air-gap superconducting synchronous machine

    , Article Journal of Magnetics ; Volume 18, Issue 3 , 2013 , Pages 260-267 ; 12261750 (ISSN) Yazdanian, M ; Elhaminia, P ; Zolghadri, M. R ; Fardmanesh, M ; Sharif University of Technology
    2013
    Abstract
    In this paper a general 2-D model of a large air-gap synchronous machine either with non-magnetic or magnetic core rotor is investigated and electrical characteristics of the machine are analytically calculated. Considering the general model, analytical equations for magnetic field density in different regions of the large air-gap machine are calculated. In addition, self and mutual inductances in the proposed model of the machine have been developed, which are the most important parameters in the electromagnetic design and transient analysis of synchronous machines. Finite element simulation has also been performed to verify the obtained results from the equations. Analytical results show... 

    An analytical model for stress analysis of short fiber composites in power law creep matrix

    , Article International Journal of Non-Linear Mechanics ; Volume 57 , 2013 , Pages 39-49 ; 00207462 (ISSN) Mondali, M ; Abedian, A ; Sharif University of Technology
    2013
    Abstract
    The creep deformation behavior of short fiber composites has been studied by an approximate analytical model. A perfect fiber/matrix interfacial bond is assumed and a power law function is considered for describing the steady state creep behavior of the matrix material. The results obtained from the proposed analytical solution satisfy the equilibrium and constitutive creep equations. Also, a parametric study was undertaken to define the effects of geometric parameters on the steady state creep strain rate of short fiber composites. The present model is then validated using the results of finite element method. The predicted strain rate and stress components by the proposed analytical... 

    Failure analysis of a gas turbine compressor in a thermal power plant

    , Article Journal of Failure Analysis and Prevention ; Volume 13, Issue 3 , 2013 , Pages 313-319 ; 15477029 (ISSN) Masoumi Khalil Abad, E ; Farrahi, G. H ; Masoumi Khalil Abad, M ; Zare, A. A ; Parsa, S ; Sharif University of Technology
    2013
    Abstract
    This study presents the results of failure analysis of a 28 MW gas turbine at the Rei electrical power plant. The gas turbine failed during the shutdown period and near its second natural frequency at 4200 rpm. Initial inspections revealed that the compressor disk of stage 15 was fractured, and all of the stationary and rotary blades of stages 14-18 of the compressor had been detached or broken from the dovetail region of the disks. The fracture roots were investigated by performing finite element modeling and fractography analysis. It was shown that a crack was initiated from the disk edge on its interface with the rotor shaft and was propagated under cyclic loading. As a result of the... 

    A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 227, Issue 6 , 2013 , Pages 672-682 ; 09544119 (ISSN) Nikkhoo, M ; Hsu, Y. C ; Haghpanahi, M ; Parnianpour, M ; Wang, J. L ; Sharif University of Technology
    2013
    Abstract
    Finite element analysis is an effective tool to evaluate the material properties of living tissue. For an interactive optimization procedure, the finite element analysis usually needs many simulations to reach a reasonable solution. The metamodel analysis of finite element simulation can be used to reduce the computation of a structure with complex geometry or a material with composite constitutive equations. The intervertebral disc is a complex, heterogeneous, and hydrated porous structure. A poroelastic finite element model can be used to observe the fluid transferring, pressure deviation, and other properties within the disc. Defining reasonable poroelastic material properties of the... 

    Relative performances of artificial neural network and regression mapping tools in evaluation of spinal loads and muscle forces during static lifting

    , Article Journal of Biomechanics ; Volume 46, Issue 8 , 2013 , Pages 1454-1462 ; 00219290 (ISSN) Arjmand, N ; Ekrami, O ; Shirazi Adl, A ; Plamondon, A ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    Two artificial neural networks (ANNs) are constructed, trained, and tested to map inputs of a complex trunk finite element (FE) model to its outputs for spinal loads and muscle forces. Five input variables (thorax flexion angle, load magnitude, its anterior and lateral positions, load handling technique, i.e., one- or two-handed static lifting) and four model outputs (L4-L5 and L5-S1 disc compression and anterior-posterior shear forces) for spinal loads and 76 model outputs (forces in individual trunk muscles) are considered. Moreover, full quadratic regression equations mapping input-outputs of the model developed here for muscle forces and previously for spine loads are used to compare the... 

    Dual-pipe damper

    , Article Journal of Constructional Steel Research ; Volume 85 , 2013 , Pages 81-91 ; 0143974X (ISSN) Maleki, S ; Mahjoubi, S ; Sharif University of Technology
    2013
    Abstract
    In this paper, a new passive earthquake energy dissipative device, called the dual-pipe damper (DPD), is introduced, tested and analytically studied. The device consists of two pipes welded at selected locations and loaded in shear. The inelastic cyclic deformation dissipates energy mainly through flexure of the pipe body. However, at large displacements a tension diagonal forms in the middle of the device which further adds to stiffness and strength. The strength, stiffness and energy dissipation of the DPD is more than two single pipe dampers that were previously studied. Cyclic quasi-static tests were performed on four samples of DPD. Excellent ductility, energy absorption and stable... 

    Probabilistic simulation of fatigue damage and life scatter of metallic components

    , Article International Journal of Plasticity ; Volume 43 , April , 2013 , Pages 101-115 ; 07496419 (ISSN) Naderi, M ; Hoseini, S. H ; Khonsari, M. M ; Sharif University of Technology
    2013
    Abstract
    A three-dimensional (3D) finite element model (FEM) is developed to predict the progressive fatigue damage with provision for stochastic distribution of material properties. Fatigue damage model for low and high cycle fatigue considering plastic deformation is implemented in the FEM and the results are presented for Al 6061-T6, Al 7075-T6, Ti 6Al-4V and SS 316. Comparisons of the numerical and experimental results of stress-life reveal the validity of the approach. Also presented is the result of an investigation showing the effect of element types, element size, variation of material properties, and initial flaws on the randomness of fatigue life. The present fatigue damage simulation... 

    Prediction of the yielding moment of flush endplate splice connections using finite element modeling

    , Article Scientia Iranica ; Volume 20, Issue 2 , 2013 , Pages 270-277 ; 10263098 (ISSN) Mohamadi Shooreh, M. R ; Mofid, M ; Sharif University of Technology
    2013
    Abstract
    This paper presents the results of parametric analyses of the yielding moment (My) of Bolted Flush Endplate Beam (BFEB) splice connections using Finite Element Modeling (FEM) tools. The connection components were modeled using three-dimensional brick elements, while contact between the endplates was modeled using Coulomb friction. Materials for beam, endplate and bolts were considered to behave non-linearly. Finite element results with three experimental and numerical studies were compared, and all indicated good agreement, which is also briefly reviewed in this paper. Using verified FEM, fairly large parametric studies, based on the practical configuration of BFEB connections, were carried... 

    Analytical modeling of magnetic flux in superconducting synchronous machine

    , Article IEEE Transactions on Applied Superconductivity ; Volume 23, Issue 1 , 2013 ; 10518223 (ISSN) Yazdanian, M ; Elhaminia, P ; Zolghadri, M. R ; Fardmanesh, M ; Sharif University of Technology
    2013
    Abstract
    A general model for superconducting synchronous machines in which the rotor can be considered as a magnetic or a nonmagnetic material is proposed and analytically investigated. Analytical equations for magnetic flux in different regions of the machine have been developed. Furthermore, nonlinear magnetization of the iron core is studied. In order to solve the equations in the case of the iron saturation, a reiterative algorithm is proposed. Finite-element simulation has also been performed to verify the equations and the proposed algorithm. The obtained analytical results show good agreement with finite-element method results  

    Dynamic responses of intervertebral disc during static creep and dynamic cyclic loading: A parametric Poroelastic finite element analysis

    , Article Biomedical Engineering - Applications, Basis and Communications ; Volume 25, Issue 1 , 2013 ; 10162372 (ISSN) Nikkhoo, M ; Haghpanahi, M ; Parnianpour, M ; Wang, J. L ; Sharif University of Technology
    2013
    Abstract
    Low back pain is a common reason for activity limitation in people younger than 45 years old, and was proved to be associated with heavy physical works, repetitive lifting, impact, stationary work postures and vibrations. The study of load transferring and the loading condition encountered in spinal column can be simulated by finite element models. The intervertebral disc is a structure composed of a porous material. Many physical models were developed to simulate this phenomenon. The confounding effects of poroelastic properties and loading conditions on disc mechanical responses are, nevertheless, not cleared yet. The objective of this study was to develop an axisymmetric poroelastic... 

    Material tailoring of the femoral component in a total knee replacement to reduce the problem of aseptic loosening

    , Article Materials and Design ; Volume 52 , 2013 , Pages 441-451 ; 02641275 (ISSN) Bahraminasab, M ; Sahari, B. B ; Edwards, K. L ; Farahmand, F ; Hong, T. S ; Naghibi, H ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    Aseptic loosening of femoral components is a significant problem affecting the life of current total knee replacements. To help reduce the problem of aseptic loosening, a new metal-ceramic poros functionally graded biomaterial (FGBM) has been designed to replace the existing metal alloy material normally used. In order to investigate the effect of using a FGBM on distal femur stresses compared to using standard material in a femoral component, a three-dimensional finite element model of the knee prosthesis has been developed. The results of the modeling and subsequent analysis indicate that by using the new FGBM compared to the existing material in a femoral component, higher levels of...