Loading...
Search for: finite-element-models
0.013 seconds
Total 193 records

    3D dynamic coupled thermoelastic solution for constant thickness disks using refined 1D finite element models

    , Article Applied Mathematical Modelling ; Volume 60 , 2018 , Pages 273-285 ; 0307904X (ISSN) Entezari, A ; Filippi, M ; Carrera, E ; Kouchakzadeh, M. A ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    This paper deals with the generalized coupled thermoelastic solution for disks with constant thickness. It is a sequel to the authors's previous work in which refined 1D Galerkin finite element models with 3D-like accuracies are developed for theories of coupled thermoelasticity. Use of the reduced models with low computational costs may be of interest in a laborious time history analysis of the dynamic problems. In this paper, the developed models are applied and evaluated for a 3D solution of the dynamic generalized coupled thermoelasticity problem in the disk subjected to thermal shock loads. Comparison of the obtained result with the results available in the literature verified the... 

    3D finite element analysis and experimental validation of constrained groove pressing-cross route as an SPD process for sheet form metals

    , Article International Journal of Advanced Manufacturing Technology ; Volume 73, Issue 9-12 , August , 2014 , Pages 1291-1305 ; ISSN: 02683768 Khodabakhshi, F ; Abbaszadeh, M ; Mohebpour, S. R ; Eskandari, H ; Sharif University of Technology
    Abstract
    A new modification of constrained groove pressing (CGP) process named as constrained groove pressing-cross route (CGP-CR) was suggested for severe plastic deformation (SPD) of sheet form metals with great potential for fabricating high strength nanostructured sheets. This process is based on the conventional CGP process including some modifications. One pass of this process includes eight stages (four corrugation and four flattening) and involves 90° cross-rotation between each two stages. As a result of each CGP-CR pass, a strain magnitude of ∼2.32 is imparted to the sample. To simulate the process, finite element modeling (FEM) was carried out using three-dimensional finite element... 

    3D finite element modeling of shear band localization via the micro-polar Cosserat continuum theory

    , Article Computational Materials Science ; Volume 49, Issue 4 , 2010 , Pages 720-733 ; 09270256 (ISSN) Khoei, A. R ; Yadegari, S ; Biabanaki, S. O. R ; Sharif University of Technology
    Abstract
    In this paper, a micro-polar continuum model is presented based on the Cosserat theory for 3D modeling of localization phenomena. Since the classical continuum model suffers from the pathological mesh-dependence in strain localization problem, the governing equations are regularized by adding the rotational degrees-of-freedom to conventional degrees-of-freedom. The fundamental relations in three-dimensional Cosserat continuum are presented and the internal length parameters are introduced in the elasto-plastic constitutive matrix to control the shear bandwidth. The mesh independency of Cosserat model in strain-softening problem is verified and the effect of internal parameters is... 

    3D wind buckling analysis of long steel corrugated silos with vertical stiffeners

    , Article Engineering Failure Analysis ; Volume 90 , 2018 , Pages 156-167 ; 13506307 (ISSN) Maleki, S ; Moazezi Mehretehran, A ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Thin-walled cylindrical steel silos are susceptible to instability under wind pressure when they are empty or only partially filled. This paper investigates numerically the wind buckling behavior of a real steel corrugated silo with 8.02 m diameter and 17.62 m height, strengthened by open-section vertical stiffeners. Accordingly, comprehensive 3D finite element models were used and detailed linear and non-linear buckling analyses were conducted. The effects of sinusoidal corrugated sheet profile dimensions on this issue were specially explored. Wind load vertical and circumferential distributions were adopted from Eurocode. Two proposed circumferential pressure distributions for an isolated... 

    3D wind buckling analysis of steel silos with stepped walls

    , Article Thin-Walled Structures ; Volume 142 , 2019 , Pages 236-261 ; 02638231 (ISSN) Maleki, S ; Mehretehran, A. M ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Thin-walled cylindrical steel silos are one of the key structures for storage of materials in many industries and agricultural sectors. They are susceptible to instability under wind pressure when they are empty or partially filled. This paper investigates numerically the wind buckling behavior of three sample steel silos with stepped walls composed of isotropic rolled shells. Wind load vertical and circumferential distributions were adopted from Eurocodes. Two proposed circumferential pressure distributions for an isolated silo and a silo in a group with a closed roof were taken into consideration. Moreover, the effect of additional inward pressure, proposed by Eurocode, on buckling... 

    A case study on the soil–pile–structure interaction of a long span arched structure

    , Article Structure and Infrastructure Engineering ; Volume 12, Issue 12 , 2016 , Pages 1614-1633 ; 15732479 (ISSN) Kildashti, K ; Dolatshahi, K. M ; Mirghaderi, R ; Sharif University of Technology
    Taylor and Francis Ltd  2016
    Abstract
    Different concepts for modelling of soil-foundation in complete dynamic interaction analysis for a 110-m height 70-m span arched structure on 180 piles were investigated in this paper. The modelling approaches consisted of a sophisticated procedure to account for soil compliance and foundation flexibility by defining frequency-dependent springs and dashpots; namely, flexible-impedance base model. The results of this model were compared with those of the conventional modelling procedures; namely, fixed base model and flexible base model by defining frequency-independent springs. In the flexible-impedance base model, the substructure approach was employed through finite element modelling. To... 

    A combined experimental and numerical study of the effect of surface roughness on nanoindentation

    , Article International Journal of Applied Mechanics ; Volume 11, Issue 7 , 2019 ; 17588251 (ISSN) Nazemian, M ; Chamani, M ; Baghani, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    Gold and copper thin films are widely used in microelectromechanical system (MEMS) and nanoelectromechanical system (NEMS) devices. Nanoindentation has been developed in mechanical characterization of thin films in recent years. Several researchers have examined the effect of surface roughness on nanoindentation results. It is proved that the surface roughness has great importance in nanoindentation of thin films. In this paper, the surface topography of thin films is simulated using the extracted data from the atomic force microscopy (AFM) images. Nanoindentation on a rough surface is simulated using a three-dimensional finite-element model. The results are compared with the results of... 

    A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing

    , Article Journal of Biomechanics ; 2017 ; 00219290 (ISSN) Azari, F ; Arjmand, N ; Shirazi Adl, A ; Rahimi Moghaddam, T ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    A number of geometrically-detailed passive finite element (FE) models of the lumbar spine have been developed and validated under in vitro loading conditions. These models are devoid of muscles and thus cannot be directly used to simulate in vivo loading conditions acting on the lumbar joint structures or spinal implants. Gravity loads and muscle forces estimated by a trunk musculoskeletal (MS) model under twelve static activities were applied to a passive FE model of the L4-L5 segment to estimate load sharing among the joint structures (disc, ligaments, and facets) under simulated in vivo loading conditions. An equivalent follower (FL), that generates IDP equal to that generated by muscle... 

    A combined passive and active musculoskeletal model study to estimate L4-L5 load sharing

    , Article Journal of Biomechanics ; Volume 70 , March , 2018 , Pages 157-165 ; 00219290 (ISSN) Azari, F ; Arjmand, N ; Shirazi Adl, A ; Rahimi Moghaddam, T ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    A number of geometrically-detailed passive finite element (FE) models of the lumbar spine have been developed and validated under in vitro loading conditions. These models are devoid of muscles and thus cannot be directly used to simulate in vivo loading conditions acting on the lumbar joint structures or spinal implants. Gravity loads and muscle forces estimated by a trunk musculoskeletal (MS) model under twelve static activities were applied to a passive FE model of the L4-L5 segment to estimate load sharing among the joint structures (disc, ligaments, and facets) under simulated in vivo loading conditions. An equivalent follower (FL), that generates IDP equal to that generated by muscle... 

    A comparison between disturbance observer-based and model-based control of needle in percutaneous applications

    , Article IECON Proceedings (Industrial Electronics Conference), 25 October 2012 through 28 October 2012 ; October , 2012 , Pages 2104-2108 ; 9781467324212 (ISBN) Maghsoudi, A ; Jahed, M ; The Institute of Electrical and Electronics Engineers (IEEE); IEEE Industrial Electronics Society (IES) ; Sharif University of Technology
    2012
    Abstract
    In this paper, model-based and distrbance observer (DOB)-based control of needle in precautious applications are compared. In the model-based approach, the force acting on the needle is calculated by evaluating the finite element model (FEM) of the tissue with the tissue deformation. In DOB-based method, the force acting on the needle is considered as an external disturbance and it is estimated using position and velocity of the needle. In both approaches, the calculated/estimated force is used in a sliding mode control scheme to steer the needle to the target. A dynamics equation for the movement of the needle is proposed which includes the force applied by the tissue to the needle. The... 

    A comprehensive 2 Dimensional and 3 Dimensional FEM study of scarf repair for a variety of common composite laminates under in-plane uniaxial and equibiaxial loadings

    , Article International Journal of Adhesion and Adhesives ; Volume 114 , 2022 ; 01437496 (ISSN) Tashi, S ; Abedian, A ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Due to their potential to recover strength and stiffness with a minimum impact on aerodynamic performance of a damaged structure, scarf repairs are boosted as a viable repair option for primary aero-structures. So far, most of the experimental and numerical studies have been limited to joint specimens and their equivalent 2 Dimensional models and a few number of studies attempted to examine the results using real scarf repair geometry. Suggestions previously made to justify the difference between scarf joint and scarf repair strength and possible solution to diminish the difference are challenged in current work. Here, it is tried to investigate the strengths and shortcomings of 2D scarf... 

    A comprehensive approach for the validation of lumbar spine finite element models investigating post-fusion adjacent segment effects

    , Article Journal of Biomechanics ; Volume 121 , 2021 ; 00219290 (ISSN) Azadi, A ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Spinal fusion surgery is usually followed by accelerated degenerative changes in the unfused segments above and below the treated segment(s), i.e., adjacent segment disease (ASD). While a number of risk factors for ASD have been suggested, its exact pathogenesis remains to be identified. Finite element (FE) models are indispensable tools to investigate mechanical effects of fusion surgeries on post-fusion changes in the adjacent segment kinematics and kinetics. Existing modeling studies validate only their intact FE model against in vitro data and subsequently simulate post-fusion in vivo conditions. The present study provides a novel approach for the comprehensive validation of a lumbar... 

    A computational dynamic finite element simulation of the thoracic vertebrae under blunt loading: spinal cord injury

    , Article Journal of the Brazilian Society of Mechanical Sciences and Engineering ; Volume 41, Issue 2 , 2019 ; 16785878 (ISSN) Biglari, H ; Razaghi, R ; Ebrahimi, S ; Karimi, A ; Sharif University of Technology
    Springer Verlag  2019
    Abstract
    Spinal cord is a long, thin, tubular bundle of nervous tissue located in the vertebral column. Since the spinal cord is one of the most crucial pathways for information connecting of the central nervous system, it has to stay safe under any blunt impact loading, i.e., accident, punch, gunshot, burst, etc. Therefore, it is important to investigate the possible injuries that may occur in the vertebral column, especially the spinal cord, as a result of blunt loading. However, due to various experimental limitations, numerical modelling, specifically finite element (FE) models, has been beneficial in predicting the injury to the spinal cord. This study, thus, aimed at predicting the stresses and... 

    A computational model for health monitoring of storage tanks using fiber Bragg grating optical fiber

    , Article Journal of Civil Structural Health Monitoring ; Volume 1, Issue 3-4 , 2011 , Pages 97-102 ; 21905452 (ISSN) Sarkandi, G. I ; Zabihollah, A ; Sharif University of Technology
    Abstract
    Storage tanks are always under different hazards such as corrosion and leaking. In this work we have introduced a computational analysis on storage tanks in which a real-time yet efficient monitoring technique using Fiber Bragg Grating (FBG) sensors for corrosion detection on the bottom plate and vibration monitoring on outer surfaces of storage tanks is proposed. A finite element model for the tank is developed, in which the outer tanks surfaces are considered as plate elements and FBG sensors as beam elements. An array of FBG sensors is utilized to compute the generated strain in the FBGs due to losing thickness in the tank's bottom plate and due to vibration on the outer surfaces in... 

    Adjacent segments biomechanics following lumbar fusion surgery: a musculoskeletal finite element model study

    , Article European Spine Journal ; Volume 31, Issue 7 , 2022 , Pages 1630-1639 ; 09406719 (ISSN) Ebrahimkhani, M ; Arjmand, N ; Shirazi-Adl, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2022
    Abstract
    Purpose: This study exploits a novel musculoskeletal finite element (MS-FE) spine model to evaluate the post-fusion (L4–L5) alterations in adjacent segment kinetics. Methods: Unlike the existing MS models with idealized representation of spinal joints, this model predicts stress/strain distributions in all passive tissues while organically coupled to a MS model. This generic (in terms of musculature and material properties) model uses population-based in vivo vertebral sagittal rotations, gravity loads, and an optimization algorithm to calculate muscle forces. Simulations represent individuals with an intact L4–L5, a preoperative severely degenerated L4–L5 (by reducing the disc height by ~... 

    A fem study of the overlapping ratio effect on superplastic formation of metal matrix composites

    , Article 27th Congress of the International Council of the Aeronautical Sciences 2010, ICAS 2010, 19 September 2010 through 24 September 2010, Nice ; Volume 3 , 2010 , Pages 1836-1843 ; 9781617820496 (ISBN) Tehrani, M ; Abedian, A ; Sharif University of Technology
    2010
    Abstract
    In aerospace applications structures weight is considered as a major performance parameter. One of the most effective manufacturing methods for weight reduction is superplastic forming. By this technique, not only the weight, but also the stress concentration, the cost, and the manufacturing time are noticeably reduced. Additionally, the components with complicated shapes could be formed in a single manufacturing step. Due to the wide demand for whiskers reinforced metal matrix composites (MMCs) in aerospace industries, many research works have been designed to extend the borders of superplastic forming to MMCs materials. In the present study, a 3-D symmetric micromechanical finite element... 

    A mathematical model for evolution of flow stress during hot deformation

    , Article Materials Letters ; Volume 59, Issue 26 , 2005 , Pages 3319-3324 ; 0167577X (ISSN) Serajzadeh, S ; Sharif University of Technology
    2005
    Abstract
    A mathematical model has been proposed to predict flow behavior of steel under hot deformation conditions with regard to the effects of dynamic recovery and dynamic recrystallization. For this purpose, Kocks-Mecking dislocation model together with a first order rate equation have been utilized. To associate temperature and strain rate variations on flow behavior of deforming metal, a thermo-viscoplastic finite element model has been coupled with the proposed model. To verify the modeling results, hot rolling experiments were performed and roll forces at various temperatures and rolling speeds were recorded. A good agreement was found between the predicted and the experimental data. © 2005... 

    A meta-model analysis of a finite element simulation for defining poroelastic properties of intervertebral discs

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 227, Issue 6 , 2013 , Pages 672-682 ; 09544119 (ISSN) Nikkhoo, M ; Hsu, Y. C ; Haghpanahi, M ; Parnianpour, M ; Wang, J. L ; Sharif University of Technology
    2013
    Abstract
    Finite element analysis is an effective tool to evaluate the material properties of living tissue. For an interactive optimization procedure, the finite element analysis usually needs many simulations to reach a reasonable solution. The metamodel analysis of finite element simulation can be used to reduce the computation of a structure with complex geometry or a material with composite constitutive equations. The intervertebral disc is a complex, heterogeneous, and hydrated porous structure. A poroelastic finite element model can be used to observe the fluid transferring, pressure deviation, and other properties within the disc. Defining reasonable poroelastic material properties of the... 

    Analytical investigation on fundamental electrical characteristics of large air-gap superconducting synchronous machine

    , Article Journal of Magnetics ; Volume 18, Issue 3 , 2013 , Pages 260-267 ; 12261750 (ISSN) Yazdanian, M ; Elhaminia, P ; Zolghadri, M. R ; Fardmanesh, M ; Sharif University of Technology
    2013
    Abstract
    In this paper a general 2-D model of a large air-gap synchronous machine either with non-magnetic or magnetic core rotor is investigated and electrical characteristics of the machine are analytically calculated. Considering the general model, analytical equations for magnetic field density in different regions of the large air-gap machine are calculated. In addition, self and mutual inductances in the proposed model of the machine have been developed, which are the most important parameters in the electromagnetic design and transient analysis of synchronous machines. Finite element simulation has also been performed to verify the obtained results from the equations. Analytical results show... 

    Analytical modeling of magnetic flux in superconducting synchronous machine

    , Article IEEE Transactions on Applied Superconductivity ; Volume 23, Issue 1 , 2013 ; 10518223 (ISSN) Yazdanian, M ; Elhaminia, P ; Zolghadri, M. R ; Fardmanesh, M ; Sharif University of Technology
    2013
    Abstract
    A general model for superconducting synchronous machines in which the rotor can be considered as a magnetic or a nonmagnetic material is proposed and analytically investigated. Analytical equations for magnetic flux in different regions of the machine have been developed. Furthermore, nonlinear magnetization of the iron core is studied. In order to solve the equations in the case of the iron saturation, a reiterative algorithm is proposed. Finite-element simulation has also been performed to verify the equations and the proposed algorithm. The obtained analytical results show good agreement with finite-element method results