Loading...
Search for: first-principles
0.009 seconds
Total 52 records

    The Effect of Pressure on the Coexistence of Superconductivity and Magnetism in RuSr2GdCu2O8 and RuSr2Gd1.4Ce0.6Cu2O10-δ

    , Ph.D. Dissertation Sharif University of Technology Fallahi, Saeed (Author) ; Akhavan, Mohammad (Supervisor)
    Abstract
    The coexistence of long-range magnetic order and superconductivity in the ruthenocuprate families, Ru1212 and Ru1222 has been studied both theoretically and experimentally. Historically these two different phases are incompatible with each other and in the most previous research reported on the coexistence of these phases, there have been observed separated magnetic and superconducting phases. However in the ruthenocuprate families, there is a single phase with both magnetic and superconducting phase which coexist with each other. It has been determined that superconductivity arises in CuO2 planes, and magnetic orders occur in RuO2. From experimental point of view, we have investigated the... 

    First Principles Studies of Mechanical, Physical, and Electronic Properties of a-Si - also, Diffusion of a Self-interstitial Atom in an Ultra-thin fcc Film Via Lattice Statics

    , Ph.D. Dissertation Sharif University of Technology Tabatabaei, Maryam (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    By employing first principles density functional theory-based (DFT) molecular dynamics (MD), the influences of dangling and floating bonds as well as distorted tetrahedral bonds are studied on the mechanical, physical, and electronic properties of amorphous Si (a-Si). For further examination of the effects of these geometrical defects, two distinct amorphous samples, namely as-quenched and annealed are generated and examined. To verify the validity of the representative cells, the obtained radial distribution function, pair correlation function, and cohesive energy are compared with those corresponding results presented in the literature. Moreover, the surface energy is calculated at final... 

    Wardrop's first principle: Extension for capacitated networks

    , Article Scientia Iranica ; Volume 28, Issue 1 , 2021 , Pages 175-191 ; 10263098 (ISSN) Zokaei Aashtiani, H ; Poorzahedy, H ; Nourinejad, M ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    In transportation literature, User Equilibrium (UE) has been widely studied since early 1950's, many studies of which define equilibrium flow of traffic for uncapacitated networks based on Wardrop's first principle, implying also a Nash Equilibrium (NE). Although, in general, the two equilibria (UE and NE) are not explicitly the same, they are shown to be equivalent under special conditions for uncapacitated UE, when volume delay functions are separable, continuous, non-decreasing and non-negative. A good deal of research is devoted to explain UE in capacitated networks based on Wardrop's first principle and the concept of generalized costs. However, UE for capacitated networks, even under... 

    Wardrop's first principle: Extension for capacitated networks

    , Article Scientia Iranica ; Volume 28, Issue 1 , 2021 , Pages 175-191 ; 10263098 (ISSN) Aashtiani, H. Z ; Poorzahedy, H ; Nourinejad, M ; Sharif University of Technology
    Sharif University of Technology  2021
    Abstract
    In transportation literature, User Equilibrium (UE) has been widely studied since early 1950's, many studies of which define equilibrium flow of traffic for uncapacitated networks based on Wardrop's first principle, implying also a Nash Equilibrium (NE). Although, in general, the two equilibria (UE and NE) are not explicitly the same, they are shown to be equivalent under special conditions for uncapacitated UE, when volume delay functions are separable, continuous, non-decreasing and non-negative. A good deal of research is devoted to explain UE in capacitated networks based on Wardrop's first principle and the concept of generalized costs. However, UE for capacitated networks, even under... 

    Two-dimensional porous graphitic carbon nitride C6N7 monolayer: first-principles calculations

    , Article Applied Physics Letters ; Volume 119, Issue 14 , 2021 ; 00036951 (ISSN) Bafekry, A ; Faraji, M ; Fadlallah, M. M ; Abdolhosseini Sarsari, I ; Jappor, H. R ; Fazeli, S ; Ghergherehchi, M ; Sharif University of Technology
    American Institute of Physics Inc  2021
    Abstract
    The fabrication of the C6N7 monolayer [Zhao et al., Sci. Bull. 66, 1764 (2021)] motivated us to discover the optical, structural, mechanical, and electronic properties of the C6N7 monolayer by employing the density functional theory (DFT) method. We find that the shear modulus and Young's modulus of the C6N7 monolayer are smaller than the relevant values of graphene. However, Poisson's ratio is more significant than that of graphene. Applying the PBE (HSE06) functional bandgap of the C6N7 monolayer is 1.2 (1.97) eV, and the electronic dispersion is almost isotropic around the Γ point. C6N7 is more active in the ultraviolet region as compared to the visible light region. This study provides... 

    Tunable magneto-optical and interfacial defects of Nd and Cr-doped bismuth ferrite nanoparticles for microwave absorber applications

    , Article Journal of Colloid and Interface Science ; Volume 608 , 2022 , Pages 1868-1881 ; 00219797 (ISSN) Yousaf, M ; Lu, Y ; Hu, E ; Wang, B ; Niaz Akhtar, M ; Noor, A ; Akbar, M ; Yousaf Shah, M. A. K ; Wang, F ; Zhu, B ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Tunable microwave absorption characteristics are highly desirable for industrial applications such as antenna, absorber, and biomedical diagnostics. Here, we report BiNdxCrxFe1-2xO3 (x = 0, 0.05, 0.10, 0.15) nanoparticles (NPs) with electromagnetic matching, which exhibit tunable magneto-optical and feasible microwave absorption characteristics for microwave absorber applications. The experimental results and theoretical calculations demonstrate the original bismuth ferrite (BFO) crystal structure, while Nd and Cr injection in the BFO structure may cause to minimize dielectric losses and enhance magnetization by producing interfacial defects in the spinel structure. Nd and Cr co-doping plays... 

    Thermally induced spin-dependent current based on Zigzag Germanene Nanoribbons

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 86 , 2017 , Pages 175-183 ; 13869477 (ISSN) Majidi, D ; Faez, R ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    In this paper, using first principle calculation and non-equilibrium Green's function, the thermally induced spin current in Hydrogen terminated Zigzag-edge Germanene Nanoribbon (ZGeNR-H) is investigated. In this model, because of the difference between the source and the drain temperature of ZGeNR device, the spin up and spin down currents flow in the opposite direction with two different threshold temperatures (Tth). Hence, a pure spin polarized current which belongs to spin down is obtained. It is shown that, for temperatures above the threshold temperature spin down current increases with the increasing temperature up to 75 K and then decreases. But spin up current rises steadily and in... 

    The importance of electron correlation in graphene and hydrogenated graphene

    , Article European Physical Journal B ; Volume 88, Issue 10 , October , 2015 ; 14346028 (ISSN) Hadipour, H ; Jafari, S. A ; Sharif University of Technology
    springer berlin  2015
    Abstract
    Local density approximation (LDA) and Green function effective Coulomb (GW) calculations are performed to investigate the effect of electronic correlations on the electronic properties of both graphene and graphane. The size of band gap in graphane increases from 3.7 eV in LDA to 4.9 eV in GW approximation. By calculating maximally localized Wannier wave functions, we evaluate the necessary integrals to get the Hubbard U and the exchange J interaction from first principles for both graphene and graphane. Our ab-initio estimates indicate that in the case of graphene, in addition to the hopping amplitude t ∼ 2.8 eV giving rise to the Dirac nature of low lying excitations, the Hubbard U value... 

    The formation and dissociation energy of vacancies in cementite: A first-principles study

    , Article Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms ; Volume 502 , 2021 , Pages 157-163 ; 0168583X (ISSN) Mehrdad Zamzamian, S ; Amirhossein Feghhi, S ; Samadfam, M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Because of the possibility of various types of vacancies in cementite due to its crystalline structure, the focus of this paper was only on vacancies. In this regard, the formation energies of single, two, three and four vacancies of over than 120 different cases were calculated using first-principles method. For the case of single vacancy, the results were in three values of ~1.63, 1.39 and 0.78 eV according to iron vacancies at general positions, iron vacancies located on mirror planes and carbon vacancies in the interstitial positions, respectively. The results for the case of two, three and four vacancies were between from 2.10 to 3.34 eV, from 3.92 to 5.10 eV and from 4.77 to 6.33 eV,... 

    Synthesis, first-principle simulation, and application of three-dimensional ceria nanoparticles/graphene nanocomposite for non-enzymatic hydrogen peroxide detection

    , Article Journal of the Electrochemical Society ; Volume 166, Issue 5 , 2019 , Pages H3167-H3174 ; 00134651 (ISSN) Rezvani, E ; Hatamie, A ; Berahman, M ; Simchi, M ; Angizi, S ; Rahmati, R ; Kennedy, J ; Simchi, A ; Sharif University of Technology
    Electrochemical Society Inc  2019
    Abstract
    Owing to the exceptional properties of graphene and the crucial role of substrate on the performance of electrochemical biosensors, several graphene-based hybrid structures have recently emerged, yielding improved selectivity and sensitivity. To date, most of the reported biosensors utilize solution-driven graphene flakes with drawbacks of low conductivity (due to high inter-junction contact resistant) and structural fragility. Herein, we present a conductive three-dimensional CeO2 semiconductor nanoparticles/graphene nanocomposite, as a platform for sensitive detection of hydrogen peroxide, an important molecule in fundamental biological processes. The 3D conductive graphene architecture is... 

    Synthesis, first-principle simulation, and application of three-dimensional ceria nanoparticles/graphene nanocomposite for non-enzymatic hydrogen peroxide detection

    , Article Journal of the Electrochemical Society ; Volume 166, Issue 5 , 2019 , Pages H3167-H3174 ; 00134651 (ISSN) Rezvani, E ; Hatamie, A ; Berahman, M ; Simchi, M ; Angizi, S ; Rahmati, R ; Kennedy, J ; Simchi, A ; Sharif University of Technology
    Electrochemical Society Inc  2019
    Abstract
    Owing to the exceptional properties of graphene and the crucial role of substrate on the performance of electrochemical biosensors, several graphene-based hybrid structures have recently emerged, yielding improved selectivity and sensitivity. To date, most of the reported biosensors utilize solution-driven graphene flakes with drawbacks of low conductivity (due to high inter-junction contact resistant) and structural fragility. Herein, we present a conductive three-dimensional CeO2 semiconductor nanoparticles/graphene nanocomposite, as a platform for sensitive detection of hydrogen peroxide, an important molecule in fundamental biological processes. The 3D conductive graphene architecture is... 

    Substitutional doping of Cu in diamond: Mott physics with p orbitals

    , Article European Physical Journal B ; Volume 77, Issue 3 , October , 2010 , Pages 331-336 ; 14346028 (ISSN) Arefi, H. H ; Jafari, S. A ; Abolhassani, M. R ; Sharif University of Technology
    2010
    Abstract
    Discovery of superconductivity in the impurity band formed by heavy doping of boron into diamond (C:B) as well as doping of boron into silicon (Si:B) has provided a rout for the possibility of new families of superconducting materials. Motivated by the special role played by copper atoms in high temperature superconducting materials where essentially Cu d orbitals are responsible for a variety of correlation induced phases, in this paper we investigate the effect of substitutional doping of Cu into diamond. Our extensive first principle calculations based on density functional theory which are averaged over various geometries indicate the formation of a mid-gap band, which mainly arises from... 

    Sparsity and infinite divisibility

    , Article IEEE Transactions on Information Theory ; Volume 60, Issue 4 , 2014 , Pages 2346-2358 ; ISSN: 00189448 Amini, A ; Unser, M ; Sharif University of Technology
    Abstract
    We adopt an innovation-driven framework and investigate the sparse/compressible distributions obtained by linearly measuring or expanding continuous-domain stochastic models. Starting from the first principles, we show that all such distributions are necessarily infinitely divisible. This property is satisfied by many distributions used in statistical learning, such as Gaussian, Laplace, and a wide range of fat-tailed distributions, such as student's-t and α-stable laws. However, it excludes some popular distributions used in compressed sensing, such as the Bernoulli-Gaussian distribution and distributions, that decay like exp (-O(|x|p)) for 1 < p < 2. We further explore the implications of... 

    Simulation of vacancy diffusion in a silver nanocluster

    , Article Chemical Physics Letters ; Volume 498, Issue 4-6 , 2010 , Pages 312-316 ; 00092614 (ISSN) Taherkhani, F ; Negreiros, F. R ; Parsafar, G ; Fortunelli, A ; Sharif University of Technology
    Abstract
    The formation and diffusion of a vacancy in a silver nanocluster are studied via a combination of first-principles and statistical mechanics simulations. A 38-atom truncated-octahedral (TO) arrangement and its homologue with 37 Ag atoms and one vacancy are considered, and density-functional calculations are performed to derive the energies of the local minima and the energy barriers connecting them. These data are then used as an input for a study of the system dynamics via a kinetic Monte Carlo algorithm, evaluating site occupancies, diffusion coefficient and equilibration time. It is found that vacancy formation and diffusion represents a viable path for atom-atom exchange in these... 

    Self-Powered humidity sensors based on sns2nanosheets

    , Article ACS Applied Nano Materials ; Volume 5, Issue 11 , 2022 , Pages 17123-17132 ; 25740970 (ISSN) Shooshtari, L ; Rafiefard, N ; Barzegar, M ; Fardindoost, S ; Irajizad, A ; Mohammadpour, R ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    With the advent of the Internet of Things (IoT), the development of self-powered sensors has received much attention. Introducing triboelectric nanogenerators (TENGs) as a power source that converts mechanical movement into electrical signals has been admired recently. Moreover, the monitoring of humidity has become enormously essential in several technological contexts from environment monitoring to biomedical applications, thus joining these two subjects provides a huge benefit in achieving self-powered humidity sensors. Here, in this research, facile, low-priced and self-powered humidity sensors are fabricated utilizing transition-metal dichalcogenides (TMD) nanosheets. Semi-vertical SnS2... 

    Reciprocity condition in synchronously time-periodic bianisotropic materials

    , Article Physical Review B ; Volume 106, Issue 21 , 2022 ; 24699950 (ISSN) Boshgazi, S ; Memarian, M ; Mehrany, K ; Rejaei, B ; Sharif University of Technology
    American Physical Society  2022
    Abstract
    In this paper, a sufficient reciprocity condition for general time-periodic modulated bianisotropic media is extracted from first principles. Reciprocity of various cases of significant importance, including stationary bianisotropic media, time-varying (TV) isotropic media, TV anisotropic media, and TV bianisotropic media, are investigated using this condition. We prove that synchronous time modulation of stationary bianisotropic yet reciprocal media (chiral, pseudochiral, and achiral) does not lead to nonreciprocity, unless the modulation function breaks time reversal symmetry. This is in contrast to recently published research. The theoretical results are validated using in-house finite... 

    Real-space exciton distribution in strained-siligraphene g-SiC7

    , Article Journal of Applied Physics ; Volume 126, Issue 6 , 2019 ; 00218979 (ISSN) Le, P. T. T ; Ebrahimi, M. R ; Davoudiniya, M ; Yarmohammadi, M ; Sharif University of Technology
    American Institute of Physics Inc  2019
    Abstract
    Siligraphene belonging to the family of two-dimensional (2D) materials has great potential in optoelectronics due to its considerable excitonic effects. In this study, the strain effects on the electronic structure and the real-space exciton wave functions of g - SiC 7 are investigated using the first-principles calculations based on the ab initio many-body perturbation theory. Alongside the increase (decrease) of the bandgap with compressive (tensile) strain, our results show that the exciton in the siligraphene monolayer under in-plane biaxial compressive strains is much more localized than that in the case of tensile one, leading to the higher and lower exciton binding energies,... 

    Pressure effect on the mechanical and electronic properties of B3N3: a first-principle study

    , Article Physica C: Superconductivity and its Applications ; Volume 548 , 15 May , 2018 , Pages 50-54 ; 09214534 (ISSN) Bagheri, M ; Faez, R ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this paper, we perform Self-Consistent Field (SCF) energy calculation of Tetragonal B3N3 in the homogenous pressure range of −30 GPa to +160 GPa. Also, we study mechanical and electronic properties of this compound as a potential candidate for a conventional phonon-mediated superconductor with a high transition temperature. To do this, the volume changes of B3N3, and its bulk modulus, due to applying pressure in the range of −30 GPa to +160 GPa are calculated and analyzed. The calculated Bulk modulus of B3N3 at 230 GPa in the relaxed condition indicates the strength of bonds and its low compressibility. We calculated and analyzed the electronic effective mass in both XM and MA directions... 

    Pressure dependence of effective Coulomb interaction parameters in BaFe2As2 by first-principle calculation

    , Article Physica C: Superconductivity and its Applications ; Volume 548 , 15 May , 2018 , Pages 61-64 ; 09214534 (ISSN) Aghajani, M ; Hadipour, H ; Akhavan, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Pressure dependence of the onsite Coulomb interactions of the BaFe2As2 has been studied by employing the constrained random phase approximation within first-principle calculations. Analyzing total and projected density of states, a pseudogap is found for dxy band at the energy roughly 0.25 eV higher than the Fermi level. Also, by applying pressure the spectral weight of the dxy orbital vanishes while other orbitals remain metallic. The different screening channels, as discussed in four different models, affect significantly on the Hubbard U while the Hund J remains almost unchanged. The average onsite bare and partially and fully screened Coulomb interactions increase with different rates... 

    Optimal-time quadcopter descent trajectories avoiding the vortex ring and autorotation states

    , Article Mechatronics ; Volume 68 , 2020 Talaeizadeh, A ; Antunes, D ; Nejat Pishkenari, H ; Alasty, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    It is well-known that helicopters descending fast may enter the so-called Vortex Ring State (VRS), a region in the velocity space where the blade's lift differs significantly from regular regions and high amplitude fluctuations are often present. These fluctuations may lead to instability and, therefore, this region is avoided, typically by increasing the horizontal speed. This paper researches this phenomenon in the context of small-scale quadcopters. The region corresponding to the VRS is identified by combining first-principles modeling and wind-tunnel experiments. Moreover, we propose that the so-called Windmill-Brake State (WBS) or autorotation region should also be avoided for...