Loading...
Search for: flexible-structures
0.006 seconds
Total 42 records

    Fractional Order Sliding Mode Controller (FOSMC) Design for Attitude Control of a Satellite with Coupled Rigid–Flexible Structures Using Fractional Order Transfer Function

    , M.Sc. Thesis Sharif University of Technology Safaei, Reza (Author) ; Fathi Jegarkandi, Mohsen (Supervisor)
    Abstract
    With the development of fractional order calculus and more accurately modeling of physical phenomena, the problem of controlling these systems, by considering the uncertainties in the system, will become necessary and inevitable. In this thesis, the fractional order transfer function model of a satellite with Coupled rigid-flexible structures is used as the reference work of the research. To control this dynamical system, sliding mode control method, which is one of the robust control methods, has been used. It is clear that it is not possible to directly design a sliding mode controller for a transfer function. For this reason, a fractional order pseudo-state space model is first obtained... 

    Multi-Scale Numerical Modeling of Two Phase Flow over Flexible Surface Micro-Structures

    , Ph.D. Dissertation Sharif University of Technology Heyat Davoudian, Salar (Author) ; Javadi, Khodayar (Supervisor)
    Abstract
    The present thesis investigates the micro-droplet dynamics in an inclined channel covered with flexible structures. For this purpose, the DPD (dissipative particle dynamics) method is used to study the behavior of particles present in the flow, including the droplet, the fluid around the droplet, and polymeric structures. This model leads to a more accurate representation of flow hydrodynamics and indicates the way for exploring and understanding complex fluid properties in real flows. The first part of the thesis deals with the dynamics of rising bubbles attached to a vertical wall under different wettability conditions. Even though bubbles rising freely in a liquid have extensively been... 

    On-line fault detection and isolation (FDI) for the exhaust path of a turbocharged SI engine

    , Article ASME 2013 Dynamic Systems and Control Conference, DSCC 2013 ; Vol. 1 , 2013 ; ISBN: 9780791856123 Salehi, R ; Shahbakhti M ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    Abstract
    Detection and isolation of faults in the exhaust gas path of a turbocharged spark ignition (SI) engine is an essential part of the engine control unit (ECU) strategies to minimize exhaust emission and ensure safe operation of a turbocharger. This paper proposes a novel physics-based strategy to detect and isolate an exhaust manifold leakage and a closed-stuck wastegate fault. The strategy is based on a globally optimal parameter estimation algorithm which detects an effective hole area in the exhaust manifold. The estimation algorithm requires prediction of the exhaust manifold's input and output flows. The input flow is predicted by a nonlinear Luenberger observer which is analytically... 

    Experimental parametric identification of a flexible beam using piezoelectric sensors and actuators

    , Article Shock and Vibration ; Vol. 2014, Issue. 1 , 2014 ; ISSN: 1070-9622 Saraygord Afshari, S ; Nobahari, H ; Kordkheili, S. A. H ; Sharif University of Technology
    Abstract
    Experimental system identification of a flexible beam based on sweep square excitation is studied. For the purpose of nonparametric identification, an excitation signal is conducted to evaluate the frequency response of the system. The experiment is designed to excite the beam using a piezo actuator, in a way to raise the chance of exciting first three natural modes. In order to find the best linear representation of the real system, two different identification methods are applied. First, autoregressive moving average eXogenous method is employed to identify the transfer function of the beam. Then, the identification is carried out using the subspace identification method to obtain the... 

    Hardware-in-the-loop optimization of an active vibration controller in a flexible beam structure using evolutionary algorithms

    , Article Journal of Intelligent Material Systems and Structures ; Vol. 25, issue. 10 , 2014 , p. 1211-1223 Nobahari, H ; Hosseini Kordkheili, S. A ; Afshari, S. S ; Sharif University of Technology
    Abstract
    In this study, active vibration control of a cantilevered flexible beam structure equipped with bonded piezoelectric sensor/actuators is investigated. The linear quadratic regulator technique together with an observer is adopted to design the controller as well as to provide the full-state feedback. Two different approaches are subsequently used for simultaneously integrated optimization of the controller and observer parameters. In the first approach, a linear experimental model of the system is obtained using identification techniques, and the optimization is then performed based on a computer simulation of the system. However, in the second approach, a hardware-in-the-loop optimization... 

    Approximate analytical solutions of an axially moving spacecraft appendage subjected to tip mass

    , Article Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering ; Vol. 228, issue. 9 , 2014 , pp. 1487-1497 ; ISSN: 09544100 Ghaleh, P. B ; Khayyat, A. A ; Farjami, Y ; Abedian, A ; Sharif University of Technology
    Abstract
    Approximate solutions for vibrations of flexible beam-type appendages subjected to tip mass are studied while uniform and exponential profiles for arm deployment are simulated. Applying an equivalent dynamical system and following Lagrangian approach, the equations of motion of the system are derived as nonlinear ordinary differential equations (ODEs) (with time-varying coefficients), in which the effect of the tip mass can be considered as some nonlinearity added to the 'no tip mass' case dynamics. The approximate closed-form solutions are obtained through a novel methodology using a computer algorithm, in which the solutions of the 'no tip mass' case are expanded by imposing quadratic... 

    Speed control of servo drives with a flexible couplings using fractional order state feedback

    , Article PEDSTC 2014 - 5th Annual International Power Electronics, Drive Systems and Technologies Conference ; 2014 , p. 25-30 Tahami, F ; Moghadam, B. E ; Sharif University of Technology
    Abstract
    Using elastic couplings in servo motor drives may lead to torsional oscillations which are usually extinguished by reducing the bandwidth of the control system as a countermeasure. A high performance servo drive however needs fast dynamic characteristics. The conventional controllers, such as PI controllers, may not be able to improve the dynamic response while keeping the system stable. Fractional order modeling offers a good framework for flexible structures such as two mass servo drives. In this paper, the dynamic response and stability of two-mass servo drive is improved using a fractional order controller. The fractional order controller allows increasing the phase margin of the system... 

    Precise position control of shape memory alloy actuator using inverse hysteresis model and model reference adaptive control system

    , Article Mechatronics ; Volume 23, Issue 8 , December , 2013 , Pages 1150-1162 ; 09574158 (ISSN) Zakerzadeh, M. R ; Sayyaadi, H ; Sharif University of Technology
    2013
    Abstract
    Position control of Shape Memory Alloy (SMA) actuators has been a challenging topic during the last years due to their nonlinearities in the governing physical equations as well as their hysteresis behaviors. Using the inverse of phenomenological hysteresis model in order to compensate the input-output hysteresis behavior of these actuators shows the effectiveness of this approach. In this paper, in order to control the tip deflection of a large deformation flexible beam actuated by an SMA actuator wire, a feedforward-feedback controller is proposed. The feedforward part of the proposed control system, maps the beam deflection into SMA temperature, is based on the inverse of the generalized... 

    On-line fault detection and isolation (FDI) for the exhaust path of a turbocharged SI engine

    , Article ASME 2013 Dynamic Systems and Control Conference, DSCC 2013 ; Volume 1 , 2013 ; 9780791856123 (ISBN) Salehi, R ; Shahbakhti, M ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    2013
    Abstract
    Detection and isolation of faults in the exhaust gas path of a turbocharged spark ignition (SI) engine is an essential part of the engine control unit (ECU) strategies to minimize exhaust emission and ensure safe operation of a turbocharger. This paper proposes a novel physics-based strategy to detect and isolate an exhaust manifold leakage and a closed-stuck wastegate fault. The strategy is based on a globally optimal parameter estimation algorithm which detects an effective hole area in the exhaust manifold. The estimation algorithm requires prediction of the exhaust manifold's input and output flows. The input flow is predicted by a nonlinear Luenberger observer which is analytically... 

    Robust shape control of two SMA actuators attached to a flexible beam based on DK iteration

    , Article International Conference on Control, Automation and Systems ; 2012 , Pages 316-321 ; 15987833 (ISSN) ; 9781467322478 (ISBN) Alambeigi, F ; Zamani, A ; Vossoughi, G ; Zakerzadeh, M. R ; Sharif University of Technology
    2012
    Abstract
    There has been great demand for shape memory alloy (SMA) wires as actuators for shape control of flexible structures. The experimental setup of this study consists of a flexible beam actuated by two active SMA actuators. The input applied to the SMA actuator in this setup is electrical current while the output is the strain or position. To control strain of the actuator, the SMA wire is heated resistively in order to reach the desired temperature calculated by inverse of the phenomenological model. In heating the SMA wire resistively, the controllable quantity is the heat input to the wire via an applied current. In controller design, changes of physical properties of SMA wires and the... 

    Vibration analysis of a new type of compliant mechanism with flexible-link, using perturbation theory

    , Article Mathematical Problems in Engineering ; Volume 2012 , February , 2012 ; 1024123X (ISSN) Viliani, N. S ; Zohoor, H ; Kargarnovin, M. H ; Sharif University of Technology
    2012
    Abstract
    Vibration analysis of a new type of compliant parallel mechanism with flexible intermediate links is investigated. The application of the Timoshenko beam theory to the mathematical modeling of the intermediate flexible link is described, and the equations of motion of the flexible links are obtained by using Lagrange's equation of motion. The equations of motion are obtained in the form of a set of ordinary differential equations by using assumed mode method theory. The governing differential equations of motion are solved using perturbation method. The assumed mode shapes and frequencies are to be obtained based on clamped-clamped boundary conditions. Comparing perturbation method with... 

    Position control of shape memory alloy actuator based on the generalized Prandtl-Ishlinskii inverse model

    , Article Mechatronics ; Volume 22, Issue 7 , 2012 , Pages 945-957 ; 09574158 (ISSN) Sayyaadi, H ; Zakerzadeh, M. R ; Sharif University of Technology
    2012
    Abstract
    Hysteresis and significant nonlinearities in the behavior of Shape Memory Alloy (SMA) actuators encumber effective utilization of these actuator. Due to these effects, the position control of SMA actuators has been a great challenge in recent years. Literature review of the research conducted in this area shows that using the inverse of the phenomenological hysteresis models can compensate the hysteresis of these actuators effectively. But, inverting some of these models, such as Preisach model, is numerically a complex task. However, the generalized Prandtl-Ishlinskii model is analytically invertible, and therefore can be implemented conveniently as a feedforward controller for compensating... 

    Nonlinear analysis of a flexible beam actuated by a couple of active SMA wire actuators

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 25, Issue 3 , 2012 , Pages 249-264 ; 17281431 (ISSN) Sayyaadi, H ; Zakerzadeh, M. R ; Sharif University of Technology
    2012
    Abstract
    There are two different ways of using SMA wires as actuators for shape control of flexible structures; which can be either embedded within the composite laminate or externally attached to the structure. Since the actuator can be placed at different offset distances from the beam, external actuators produce more bending moment and, consequently, considerable shape changes with the same magnitude of the actuation force comparing to the embedded type. Such a configuration also provides fast convection which is very important in shape control applications that require a high-frequency response of SMA actuators. Although combination and modeling of externally-attached SMA actuator wires and... 

    Modeling of a nonlinear Euler-Bernoulli flexible beam actuated by two active shape memory alloy actuators

    , Article Journal of Intelligent Material Systems and Structures ; Volume 22, Issue 11 , 2011 , Pages 1249-1268 ; 1045389X (ISSN) Zakerzadeh, M. R ; Salehi, H ; Sayyaadi, H ; Sharif University of Technology
    2011
    Abstract
    There are two different ways of using shape memory alloy (SMA) wire as an actuator for shape control of flexible structures: it can be either embedded within the composite laminate or externally attached to the structure. As the actuator can be placed at different offset distances from the beam, external actuators produce more bending moment and, consequently, considerabnle shape changes with the same magnitude of actuation force compared with the embedded type. Such a configuration also provides faster heat transfer rate owing to convection, which is very important in shape control applications that require a highfrequency response of SMA actuators. Although combination and physics-based... 

    Analysis of a flexible beam actuated by two active SMA wires

    , Article ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010, 28 September 2010 through 1 October 2010 ; Volume 1 , October , 2010 , Pages 661-672 ; 9780791844151 (ISBN) Zakerzadeh, M. R ; Sayyaadi, H ; Aerospace Division ; Sharif University of Technology
    2010
    Abstract
    There are two ways of using SMAs as actuators for shape control of flexible structures; they can be either embedded within composite laminates or externally attached to the structures. Since the actuator can be placed at different offset distances from the beam, external actuators produce more bending moment and, consequently, more shape change. Such a configuration also allows introduction of fast convection cooling, very important in shape control applications that require a high-frequency response of SMA actuators. Although combination and modeling of externally-attached SMA actuator wires and strips have been widely considered by some researchers, these studies have some weaknesses that... 

    Experimental study on interaction of aerodynamics with flexible wings of flapping vehicles in hovering and cruise flight

    , Article Archive of Applied Mechanics ; Volume 80, Issue 11 , 2010 , Pages 1255-1269 ; 09391533 (ISSN) Mazaheri, K ; Ebrahimi, A ; Sharif University of Technology
    2010
    Abstract
    Flapping wings are promising lift and thrust generators, especially for very low Reynolds numbers. To investigate aeroelastic effects of flexible wings (specifically, wing's twisting stiffness) on hovering and cruising aerodynamic performance, a flapping-wing system and an experimental setup were designed and built. This system measures the unsteady aerodynamic and inertial forces, power usage, and angular speed of the flapping wing motion for different flapping frequencies and for various wings with different chordwise flexibility. Aerodynamic performance of the vehicle for both no wind (hovering) and cruise condition was investigated. Results show how elastic deformations caused by... 

    Boundary exponential stabilization of non-classical micro/nano beams subjected to nonlinear distributed forces

    , Article Applied Mathematical Modelling ; Volume 40, Issue 3 , 2016 , Pages 2223-2241 ; 0307904X (ISSN) Edalatzadeh, M. S ; Alasty, A ; Sharif University of Technology
    Elsevier Inc 
    Abstract
    In this paper, the vibration suppression of micro- or nano-scale cantilever beams used in M/NEMS devices is studied. The beam is subjected to some nonlinear distributed forces, namely electrostatics force with first order fringing field correction, Casimir, and van der Waals forces. For the sake of precision, the beam is modeled by strain gradient elasticity theory capable of predicting the size effects in mechanical behavior of small-scale flexible structures. Since the governing partial differential equation of motion is nonlinear, the linearization approach is adopted to tackle the control problem. A novel control law is proposed that guarantees the exponential stability of the linearized... 

    Vibrational properties of C60: A comparison among different inter-atomic potentials

    , Article Computational Materials Science ; Volume 122 , 2016 , Pages 38-45 ; 09270256 (ISSN) Nejat Pishkenari, H ; Ghaf Ghanbari, P ; Sharif University of Technology
    Elsevier  2016
    Abstract
    Using seven bond-order potentials and five force fields, the fundamental natural frequency of C60,Ag(1) (breathing mode), and two other basic modes, namely Hg(1) (squashing mode) and T2g(1) are calculated. The same frequencies are derived through a DFT B3LYP/6-31G(d) calculation. Furthermore, the results are compared with Raman and IR scattering data, and previous quantum mechanics calculations, depicting the strength of each interatomic potential in predicting the vibrational properties of Buckminsterfullerene. AIREBO, which is formulated for analyzing hydrocarbons, shows the highest accuracy among all of the potentials under investigation. In general, bond-order potentials predict a... 

    A fractional order model for steer-by-wire systems

    , Article IECON Proceedings (Industrial Electronics Conference) ; 2009 , Pages 4161-4166 Tahami, F ; Afshang, H ; Sharif University of Technology
    Abstract
    The steer by wire system for vehicles has attracted much attention in recent years. Steer by wire systems provide many benefits in terms of functionality and at the same time present significant challenges too. It is essential to investigate the stability of steer by wire systems using a more sophisticated model rather than common approximated models. Fractional order modeling offers a good modeling framework for complex dynamical systems involving flexible structures such as multi-mass drives. In this paper a nonlinear fractional order model for steer by wire systems is presented  

    Control of vibration suppression of a smart beam by pizoelectric elements

    , Article 2nd International Conference on Environmental and Computer Science, ICECS 2009, 28 December 2009 through 30 December 2009, Dubai ; 2009 , Pages 165-169 ; 9780769539379 (ISBN) Azizi, A ; Durali, L ; Rad, F. P ; Zareie, S ; Sharif University of Technology
    Abstract
    Vibration control is an essential problem in different structure. Smart material can make a structure smart, adaptive and self-controlling so they are effective in active vibration control. Piezoelectric elements can be used as sensors and actuators in flexible structures for sensing and actuating purposes. In this paper we use PZT elements as sensors and actuator to control the vibration of a cantilever beam. Also we study the effect of different types of controller on vibration. © 2009 IEEE