Loading...
Search for: flow-patterns
0.008 seconds
Total 95 records

    High frequency oscillatory flow in micro channels

    , Article Colloids and Surfaces A: Physicochemical and Engineering Aspects ; Vol. 460 , 2014 , pp. 355-360 ; ISSN: 09277757 Karbaschi, M ; Javadi, A ; Bastani, D ; Miller, R ; Sharif University of Technology
    Abstract
    This paper deals with computational and experimental studies on the oscillatory flow at high frequencies up to 100. Hz performed with the Oscillating Drop and Bubble Analyzer (ODBA) setup based on the capillary pressure technique. The CFD results are validated considering pressure amplitude experimental data. The simulated results of phase shift between the generated oscillatory flow and the consequent pressure amplitudes show also good agreement with the experimental data. In absence of any compressibility and viscoelasticity effects and assumptions, a complex velocity field during oscillation is the main reason for the observation of a phase shift. The results of velocity profiles at the... 

    Simulation of mixed electroosmotic/pressure-driven flows by utilizing dissipative particle dynamics

    , Article Microfluidics and Nanofluidics ; Vol. 17, issue. 1 , July , 2014 , pp. 199-215 ; ISSN: 16134982 Mehboudi, A ; Noruzitabar, M ; Mehboudi, M ; Sharif University of Technology
    Abstract
    In this paper, we present an extension of dissipative particle dynamics method in order to study the mixed electroosmotic/pressure-driven micro- or nano-flows. This method is based on the Poisson-Boltzmann equation and has a great potential to resolve the electric double layer (EDL). Hence, apart from studying the bulk flow, it also provides a strong capability in order to resolve the complex phenomena occur inside the EDL. We utilize the proposed method to study the pure electroosmotic and also the mixed electroosmotic/pressure-driven flow through the straight micro-/nano-channels. The obtained results are in good agreement with the available analytical solutions. Furthermore, we study the... 

    Numerical investigation on the solid flow pattern in bubbling gas-solid fluidized beds: Effects of particle size and time averaging

    , Article Powder Technology ; Vol. 264, issue , September , 2014 , p. 466-476 Askarishahi, M ; Salehi, M. S ; Molaei Dehkordi, A ; Sharif University of Technology
    Abstract
    The effects of particle size on the solid flow pattern in gas-solid bubbling fluidized beds were investigated numerically using two-fluid model based on the kinetic theory of granular flow. In this regard, the set of governing equations was solved using finite volume method in two-dimensional Cartesian coordinate system. Glass bead particles with mean sizes of 880. μm, 500. μm, and 351. μm were fluidized by air flow at excess gas velocities of 0.2. m/s and 0.4. m/s. For particle diameters of 880 and 351. μm, the predicted characteristic times for solid dispersion were 0.14. s and 0.15. s, respectively, while characteristic times for solid diffusivity were 1.68. ms and 0.75. ms in the same... 

    Numerical investigation of the effect of sprue base design on the flow pattern of aluminum gravity casting

    , Article Defect and Diffusion Forum ; Volume 344 , October , 2013 , Pages 43-53 ; 10120386 (ISSN) ; 9783037859049 (ISBN) Baghani, A ; Bahmani, A ; Davami, P ; Varahram, N ; Shabani, M. O ; Fisher D. J ; Sharif University of Technology
    2013
    Abstract
    Effects of sprue base size and design on flow pattern during aluminum gravity casting have been investigated by employing different sprue base sizes and using computational fluid dynamics (CFD). Calculations was carried out using SUTCAST simulation software based on solving Navier-Stokes equation and tracing the free surface using SOLA-VOF algorithm. Flow pattern was analyzed with focusing on streamlines and velocity distribution in sprue base, runner and in-gate. Increasing well size was produced a vortex flow at the bottom of sprue base which increased the surface velocity of liquid metal in runner. Using a rather big sprue well could eliminate vena contracta, but in-gate velocity was... 

    Stream-wise and cross-flow vortex induced vibrations of single tapered circular cylinders: An experimental study

    , Article Applied Ocean Research ; Volume 42 , 2013 , Pages 124-135 ; 01411187 (ISSN) Zeinoddini, M ; Tamimi, V ; Saeed Seif, M ; Sharif University of Technology
    2013
    Abstract
    Tapered circular cylinders are employed in a variety of ocean engineering applications. While being geometrically simple, this configuration creates a complex flow pattern in the near wake of the structure. Most previous experimental studies on tapered circular cylinders were dealing with stationary cylinders to explore the wake flow field and vortex shedding patterns past the cylinder. Few studies paid attentions to the vortex induced vibration of the tapered cylinders. This paper reports some results from in-water towing-tank experiments on the vortex-excited vibrations of tapered circular cylinders in a uniform flow. Cylinders with different mean diameters (28 and 78 mm), mass ratios (6.1... 

    Determination of optimum injection flow rate to achieve maximum micro bubble drag reduction in ships; An experimental approach

    , Article Scientia Iranica ; Volume 20, Issue 3 , 2013 , Pages 535-541 ; 10263098 (ISSN) Sayyaadi, H ; Nematollahi, M ; Sharif University of Technology
    2013
    Abstract
    Reduction in ship resistance, in order to decrease fuel consumption and also achieve higher speeds, has been the topic of major research over the last three decades. One of the most attractive ideas in this field is micro bubble drag reduction, which attempts to obtain optimum injection flow rate based on ship specifications. The model test results of a 70 cm catamaran model was used to quantify the effect of air injection rate on drag reduction, and to estimate a simple formulation for calculating an efficient injection rate by considering the main parameters of the ship, such as: length, width and speed. The test results show that excessive air injection decreases the drag reduction... 

    Flow field around single and tandem piers

    , Article Flow, Turbulence and Combustion ; Volume 90, Issue 3 , April , 2013 , Pages 471-490 ; 13866184 (ISSN) Ataie Ashtiani, B ; Aslani-Kordkandi, A ; Sharif University of Technology
    2013
    Abstract
    The present study provides a comparison between the flow pattern around two circular piers in tandem and a single pier set up on a moderately rough flat bed in a laboratory flume. Velocities are measured by an Acoustic Doppler Velocimeter (ADV). The contours of the time-averaged velocity components, Reynolds shear stresses, turbulence intensities and turbulence kinetic energy at different planes are presented. Streamlines and vectors are used to study the flow features. The analysis of power spectra around the piers is also presented. The results show that the presence of downstream pier changes the flow structure to a great extent, particularly in the near-wake region. Within the gap... 

    Flow field around side-by-side piers with and without a scour hole

    , Article European Journal of Mechanics, B/Fluids ; Volume 36 , 2012 , Pages 152-166 ; 09977546 (ISSN) Ataie Ashtiani, B ; Aslani Kordkandi, A ; Sharif University of Technology
    2012
    Abstract
    The present study provides the experimental results of the flow pattern around two-circular piers positioned in side-by-side arrangement. The experiments were performed for two bed configurations (with and without a scour hole). Velocities were measured by an Acoustic Doppler Velocimeter (ADV). Flat bed and scour hole were frozen by synthetic glue to facilitate the performance of the experiments. The contours and distributions of the time-averaged velocity components, turbulence intensities, turbulence kinetic energy, and Reynolds stresses at different horizontal and vertical planes are presented. Streamlines and velocity vectors obtained from time-averaged velocity fields are used to show... 

    Long-lived and unstable modes of Brownian suspensions in microchannels

    , Article Journal of Fluid Mechanics ; Volume 701 , 2012 , Pages 407-418 ; 00221120 (ISSN) Khoshnood, A ; Jalali, M. A ; Sharif University of Technology
    2012
    Abstract
    We investigate the stability of the pressure-driven, low-Reynolds-number flow of Brownian suspensions with spherical particles in microchannels. We find two general families of stable/unstable modes: (i) degenerate modes with symmetric and antisymmetric patterns; (ii) single modes that are either symmetric or antisymmetric. The concentration profiles of degenerate modes have strong peaks near the channel walls, while single modes diminish there. Once excited, both families would be detectable through high-speed imaging. We find that unstable modes occur in concentrated suspensions whose velocity profiles are sufficiently flattened near the channel centreline. The patterns of growing unstable... 

    Intelligent image-based gas-liquid two-phase flow regime recognition

    , Article Journal of Fluids Engineering, Transactions of the ASME ; Volume 134, Issue 6 , 2012 ; 00982202 (ISSN) Ghanbarzadeh, S ; Hanafizadeh, P ; Hassan Saidi, M ; Sharif University of Technology
    2012
    Abstract
    Identification of different flow regimes in industrial systems operating under two-phase flow conditions is necessary in order to safely design and optimize their performance. In the present work, experiments on two-phase flow have been performed in a large scale test facility with the length of 6 m and diameter of 5 cm. Four main flow regimes have been observed in vertical air-water two-phase flow at moderate superficial velocities of gas and water namely: Bubbly, Slug, Churn, and Annular. An image processing technique was used to extract information from each picture. This information includes the number of bubbles or objects, area, perimeter, as well as the height and width of objects... 

    Simulation of flow of short fiber suspensions through a planar contraction

    , Article Scientia Iranica ; Volume 19, Issue 3 , June , 2012 , Pages 579-584 ; 10263098 (ISSN) Khodadadi Yazdi, M ; Ramazani S. A. A ; Kamyabi, A ; Hosseini Amoli, H ; Sharif University of Technology
    2012
    Abstract
    In this study, the flow of a fiber filled viscoelastic matrix through planar contractions is investigated. It was found that by adding fiber to the matrix vortex, the intensity increases. Fiber orientation along "x" and "y" axes was studied too. It was found that fiber orientation could be used for determining the flow regime through the contraction geometry. The rigidity condition of fibers, which needs the trace of the orientation tensor to be unity everywhere in the domain, is correct except near walls and the reentrant corner, which is slightly less than one. In these regions, the stress magnitude is higher, which results in more numerical errors, and which further leads to some error in... 

    Analysis of nanofluid heat transfer in parallel-plate vertical channels partially filled with porous medium

    , Article International Journal of Thermal Sciences ; Volume 55 , 2012 , Pages 103-113 ; 12900729 (ISSN) Hajipour, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Abstract
    In this article, mixed-convective heat transfer of nanofluids in a vertical channel partially filled with highly porous medium was studied. In the porous region, the Brinkman-Forchheimer extended Darcy model was used to describe the fluid flow pattern. Different viscous dissipation models were also applied to account for viscous heating. At the porous medium-fluid interface, interfacial coupling conditions for the fluid velocity and temperature were used to derive the analytical solution using a two-parameter perturbation method. The model used for the nanofluids incorporates the effects of Brownian motion and thermophoresis. With constant wall temperature, velocity and temperature profiles... 

    Characterizing the Role of Shale Geometry and Connate Water Saturation on Performance of Polymer Flooding in Heavy Oil Reservoirs: Experimental Observations and Numerical Simulations

    , Article Transport in Porous Media ; Volume 91, Issue 3 , 2012 , Pages 973-998 ; 01693913 (ISSN) Mohammadi, S ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Many heavy oil reservoirs contain discontinuous shales which act as barriers or baffles to flow. However, there is a lack of fundamental understanding about how the shale geometrical characteristics affect the reservoir performance, especially during polymer flooding of heavy oils. In this study, a series of polymer injection processes have been performed on five-spot glass micromodels with different shale geometrical characteristics that are initially saturated with the heavy oil. The available geological characteristics from one of the Iranian oilfields were considered for the construction of the flow patterns by using a controlled-laser technology. Oil recoveries as a function of pore... 

    Laminar premixed V-shaped flame response to velocity and equivalence ratio perturbations: Investigation on kinematic response of flame

    , Article Scientia Iranica ; Volume 18, Issue 4 B , 2011 , Pages 913-922 ; 10263098 (ISSN) Riazi, R ; Farshchi, M ; Sharif University of Technology
    2011
    Abstract
    The response of a rod-stabilized, V-shaped, premixed flame to upstream velocity and equivalence ratio perturbations was characterized as a function of excitation frequency. The response of the flame to equivalence ratio perturbations was calculated, assuming that the heat release response is controlled by contributions from three disturbances. These disturbances include flame speed, heat of reaction and flame area. Using an analytical model, based on linearization of the front tracking equation for inclined flames, the kinematics of a V-flame anchored on a central obstacle was investigated and its response was compared with that of a conical flame. The results suggest that the phase response... 

    Experimental investigation of air-water, two-phase flow regimes in vertical mini pipe

    , Article Scientia Iranica ; Volume 18, Issue 4 B , August , 2011 , Pages 923-929 ; 10263098 (ISSN) Hanafizadeh, P ; Saidi, M. H ; Nouri Gheimasi, A ; Ghanbarzadeh, S ; Sharif University of Technology
    2011
    Abstract
    In this study, the flow patterns of air-water, two-phase flows have been investigated experimentally in a vertical mini pipe. The flow regimes were observed by a high speed video recorder in pipes with diameters of 2,3 and 4 mm and length 27, 31 and 25 cm, respectively. The comprehensive visualization of air-water, two-phase flow in a vertical mini pipe has been performed to realize the physics of such a two-phase flow. Different flow patterns of air-water flow were observed simultaneously in the mini pipe at different values of air and water flow rates. Consequently, the flow pattern map was proposed for flow in the mini-pipe, in terms of superficial velocities of liquid and gas phases. The... 

    Comparative numerical analysis of the flow pattern and performance of a foil in flapping and undulating oscillations

    , Article Journal of Marine Science and Technology (Japan) ; Volume 20, Issue 2 , June , 2015 , Pages 257-277 ; 09484280 (ISSN) Abbaspour, M ; Ebrahimi, M ; Sharif University of Technology
    Springer-Verlag Tokyo  2015
    Abstract
    Nature presents a variety of propulsion, maneuvering, and stabilization mechanisms which can be inspired to design and construction of manmade vehicles and the devices involved in them, such as stabilizers or control surfaces. This study aims to elucidate and compare the propulsive vortical signature and performance of a foil in two important natural mechanisms: flapping and undulation. Navier–Stokes equations are solved in an ALE framework domain containing a 2D NACA 0012 foil moving with prescribed kinematics. All simulations are carried out using a pressure-based finite volume method solver. The results of time-averaged inline force versus Strouhal number (St) show that in a given... 

    Control of anode supported SOFCs (solid oxide fuel cells): Part I. mathematical modeling and state estimation within one cell

    , Article Energy ; Volume 90 , October , 2015 , Pages 605-621 ; 03605442 (ISSN) Amedi, H. R ; Bazooyar, B ; Pishvaie, M. R ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this paper, a 3-dimensional mathematical model for one cell of an anode-supported SOFC (solid oxide fuel cells) is presented. The model is derived from the partial differential equations representing the conservation laws of ionic and electronic charges, mass, energy, and momentum. The model is implemented to fully characterize the steady state operation of the cell with countercurrent flow pattern of fuel and air. The model is also used for the comparison of countercurrent with concurrent flow patterns in terms of thermal stress (temperature distribution) and quality of operation (current density). Results reveal that the steady-state cell performance curve and output of simulations... 

    Evaluation and modeling of a newly designed impinging stream photoreactor equipped with a TiO2 coated fiberglass cloth

    , Article RSC Advances ; Volume 5, Issue 12 , 2015 , Pages 9019-9027 ; 20462069 (ISSN) Jafarikojour, M ; Mohammadi, M. M ; Sohrabi, M ; Royaee, S. J ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    The photocatalytic degradation of p-nitrophenol (PNP) using TiO2 particles immobilized on a fiberglass cloth was investigated in a novel design of a photo-impinging stream reactor. A spray painted method has been used for the coating process. The structural properties of the immobilized sample were examined using X-ray diffraction and a scanning electron microscope (SEM). The photocatalytic degradation results showed the good performance of the reactor. The flow regime within the reactor was characterized and modeled by applying a liquid residence time distribution. A compartment model consisting of four continuous stirred regions was assigned to describe the flow pattern in the reactor. A... 

    Fuzzy clustering of vertical two phase flow regimes based on image processing technique

    , Article American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FEDSM, 1 August 2010 through 5 August 2010, Montreal, QC ; Volume 2 , 2010 , Pages 303-313 ; 08888116 (ISSN) ; 9780791849491 (ISBN) Ghanbarzadeh, S ; Hanafizadeh, P ; Hassan, M ; Bozorgmehry, R. B ; Sharif University of Technology
    2010
    Abstract
    In order to safe design and optimize performance of industrial systems which work under two phase flow conditions, it's often needed to categorize flow into different regimes. In present work the experiments of two phase flow were done in a large scale test facility with length of 6m and 5cm diameter. Four main flow regimes were observed in vertical air-water two phase flows at moderate superficial velocities of gas and water: Bubbly, Slug, Churn and Annular. Some image processing techniques were used to extract information from each picture. This information include number of bubbles or objects, area, perimeter, height and width of objects (second phase).Also a texture feature extraction... 

    Experimental investigation of baffle effect on the flow in a rectangular primary sedimentation tank

    , Article Scientia Iranica ; Volume 17, Issue 4 B , 2010 , Pages 241-252 ; 10263098 (ISSN) Jamshidnia, H ; Firoozabadi, B ; Sharif University of Technology
    2010
    Abstract
    In primary sedimentation tanks, short-circuiting enlargement of dead zones and high flow mixing problems are caused by circulation regions (dead zones), which can reduce the optimal sedimentation of particles. For proper design of such tanks, the formation of recirculation zones should be avoided. The provision of a baffle as a geometrical modification of a tank may influence the flow field for better sedimentation. Thus, in this study, velocity measurements were performed by a three-dimensional Acoustic Doppler Velocimeter (ADV) to investigate baffle effects on the velocity distribution in a primary rectangular sedimentation tank, quantitatively. Effects of baffle positioning were also...