Loading...
Search for: free-surfaces
0.008 seconds
Total 51 records

    Experimental and numerical investigation of hydrodynamic performance of a new surface piercing propeller family

    , Article Ocean Engineering ; Volume 264 , 2022 ; 00298018 (ISSN) Seif, M. S ; Teimouri, M ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Today, passenger and racing boats increasingly utilize surface-piercing propellers. This type of propeller operates in two distinct phases of water and air simultaneously. As a result, this propeller type has additional characteristics that must be investigated separately from conventional propellers. A new family of surface piercing propellers was investigated using experimental and numerical methods. The family consisted of five propeller models with varying geometric features operating at an immersion ratio of 0.7. Experiments were conducted in the Sharif University of Technology's hydrodynamic group's cavitation tunnel. Additionally, using Star-CCM + software, the numerical simulation... 

    Direct pore-scale modeling of two-phase flow: investigation of the effect of interfacial tension and contact angle

    , Article Special Topics and Reviews in Porous Media ; Volume 12, Issue 3 , 2021 , Pages 71-88 ; 21514798 (ISSN) Azizi, Q ; Hashemabadi, S. H ; Alamooti, A. H. M ; Sharif University of Technology
    Begell House Inc  2021
    Abstract
    The process of fluid flow displacement in porous media has recently gained great prominence owing to its widespread usage in a variety of industries, especially in the case of pore scale investigations. Although, many studies have been conducted to address pore-scale investigations in both modeling and experimental approaches, the role of interfacial tension and contact angle on pore-scale phenomena is less focused. In this work, direct pore-scale modeling was used to precisely examine the effect of interfacial tension and contact angle on the fluid flow at the microscale. Also, several pore-scale mechanisms, including Haines jump and dynamic breakup mechanisms, were observed. Therefore, the... 

    The impingement of liquid boiling droplet onto a molten phase change material as a direct-contact solidification method

    , Article Thermal Science and Engineering Progress ; Volume 23 , 2021 ; 24519049 (ISSN) Faghiri, S ; Mohammadi, O ; Hosseininaveh, H ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The boiling of a fluid dripping on the surface of molten phase-change materials provides an efficient means for heat exchange or cooling of the melt. For the first time, in this study, the impact of acetone drops onto molten paraffin as a direct-contact solidification method is experimentally investigated to get a better insight into the interaction between the drop boiling and the heat extraction process from the phase change materials during impact. As the acetone drop impacts the molten paraffin surface, acetone starts to boil, and a portion of molten paraffin is solidified. Four impact Weber numbers (corresponding to heights of 10, 20, 30, and 40 cm) for the acetone drop and six surface... 

    Discharge coefficient of a rectangular labyrinth weir

    , Article Proceedings of the Institution of Civil Engineers: Water Management ; Volume 166, Issue 8 , September , 2013 , Pages 443-451 ; 17417589 (ISSN) Kabiri Samani, A ; Javaheri, A ; Borghei, S. M ; Sharif University of Technology
    2013
    Abstract
    A rectangular labyrinth weir has a very good flood release capacity as well as strong economical and structural advantages. In this study, combined analytical and experimental investigations were undertaken for a rectangular labyrinth weir. The analytical model is based on the synthesis of general weir equations and spatially varied flow dynamic equations. A comprehensive set of experiments led to characterisation of the flow behaviour for low and high heads over the weir and indicated the influences of weir geometry on the release capacity. The results show that this type of weir represents an effective weir alternative and could be five times more efficient than a corresponding traditional... 

    Investigation of free surface flow generated by a planing flat plate using smoothed particle hydrodynamics method and FLOW3D simulations

    , Article Proceedings of the Institution of Mechanical Engineers Part M: Journal of Engineering for the Maritime Environment ; Volume 227, Issue 2 , 2013 , Pages 125-135 ; 14750902 (ISSN) Ghadimi, P ; Dashtimanesh, A ; Farsi, M ; Najafi, S ; Sharif University of Technology
    2013
    Abstract
    In this article, smoothed particle hydrodynamics method is applied in order to study the free surface flow generated by two-dimensional planing flat plate. For this purpose, a two-dimensional smoothed particle hydrodynamics code is developed and validated by the well-known dam breaking problem. Four trim angles and three different velocities are considered to perform a parametric study to examine their physical effects. The obtained results from smoothed particle hydrodynamics are compared against the corresponding Reynolds-averaged Navier Stokes solutions. It is observed that at lower velocities, there exists a good agreement between the smoothed particle hydrodynamics and Reynolds-averaged... 

    Effects of anti-vortex plates on air entrainment by free vortex

    , Article Scientia Iranica ; Volume 20, Issue 2 , 2013 , Pages 251-258 ; 10263098 (ISSN) Kabiri Samani, A. R ; Borghei, S. M ; Sharif University of Technology
    2013
    Abstract
    Free surface vortex and air entrainment are not favorable experiences in hydropower and pumping projects. While complete omission of vortex and air entrainment is not always cost effective, partially weakened free-surface vortex flow is more economical and practical. Hence, in this study, a comprehensive set of experiments were conducted to partially reduce vortex strength and air entrainment at vertical pipe intakes, using rectangular anti-vortex plates. This phenomenon results in increasing water discharge compared with a corresponding free-surface vortex for the same water depth, i.e. in cases of shaft spillway. The plates were used as singles and in pairs and placed symmetrically and... 

    2D numerical simulation of density currents using the SPH projection method

    , Article European Journal of Mechanics, B/Fluids ; Volume 38 , 2013 , Pages 38-46 ; 09977546 (ISSN) Ghasemi V., A ; Firoozabadi, B ; Mahdinia, M ; Sharif University of Technology
    2013
    Abstract
    Density currents (DCs) or gravity currents are driven by gravity in a fluid environment with density variation. Smoothed Particle Hydrodynamics (SPH) has been proved to have capabilities such as free surface modeling and accurate tracking of the immiscible-fluids interface that can be useful in the context of gravity currents. However, SPH applications to gravity currents have been limited to often-coarse simulations of high density-ratio currents. In this work, the SPH projection method is tried to solve currents with very low density-ratios (close to one), at a resolution, that captures the Kelvin-Helmholtz instabilities at the fluids interface. Existing implementations of the SPH... 

    A successive boundary element model for investigation of sloshing frequencies in axisymmetric multi baffled containers

    , Article Engineering Analysis with Boundary Elements ; Volume 37, Issue 2 , 2013 , Pages 383-392 ; 09557997 (ISSN) Ebrahimian, M ; Noorian, M. A ; Haddadpour, H ; Sharif University of Technology
    2013
    Abstract
    This study presents a developed successive Boundary Element Method to determine the symmetric and antisymmetric sloshing natural frequencies and mode shapes for multi baffled axisymmetric containers with arbitrary geometries. The developed fluid model is based on the Laplace equation and Green's theorem. The governing equations of fluid dynamic and free surface boundary condition are also applied to proposed model. A zoning method is presented to model arbitrary arrangement of baffles in multi baffled axisymmetric tanks. The influence of each zone on neighboring zones is applied by introducing interface influence matrix which correlates the velocity potential of interfaces to their flux. By... 

    Two phase modal analysis of nonlinear sloshing in a rectangular container

    , Article Ocean Engineering ; Volume 38, Issue 11-12 , August , 2011 , Pages 1277-1282 ; 00298018 (ISSN) Ansari, M. R ; Firouz Abadi, R. D ; Ghasemi, M ; Sharif University of Technology
    2011
    Abstract
    Sloshing, or liquid free surface oscillation, in containers has many important applications in a variety of engineering fields. The modal method can be used to solve linear sloshing problems and is the most efficient reduced order method that has been used during the previous decade. In the present article, the modal method is used to solve a nonlinear sloshing problem. The method is based on a potential flow solution that implements a two-phase analysis on sloshing in a rectangular container. According to this method, the solution to the mass conservation equation, with a nonpenetration condition at the tank walls, results in velocity potential expansion; this is similar to the mode shapes... 

    Comparing sloshing phenomena in a rectangular container with and without a porous medium using explicit nonlinear 2-D BEM-FDM

    , Article Scientia Iranica ; Volume 17, Issue 2 B , 2010 , Pages 93-101 ; 10263098 (ISSN) Abbaspour, M ; Ghodsi Hassanabad, M ; Sharif University of Technology
    2010
    Abstract
    The sloshing phenomena in a partially filled tank can affect its stability. Modifications of tank instability due to the movement of the tank carrier, are key design points for the stability of a carrier. Even though the sloshing phenomenon has already been investigated using the BEM-FDM technique, the research in this paper covers this phenomenon in a porous media, which is new in 2-D coordinates. For this purpose, a Laplace equation has been used for potential flow, and kinematic and dynamic boundary conditions have been applied to the free surface. Also, a formulation has been developed for a free surface in porous media. BEM has been used for solving the governing equation and FDM... 

    Effect of anti-vortex plates on critical submergence at a vertical intake

    , Article Scientia Iranica ; Volume 17, Issue 2 A , 2010 , Pages 89-95 ; 10263098 (ISSN) Borghei, S. M ; Kabiri Samani, A. R ; Sharif University of Technology
    2010
    Abstract
    One of the sources of disturbance at intakes is the occurrence of free-surface vortices with an air core. The most common solution for avoiding air-entrainment is the use of anti-vortex devices and, especially, plates for large pipe or shaft intakes. If plates are used, then, the geometry and position of them should be studied experimentally. Since only general guidance for use of plates is available, a study for the more precise placement of plates is needed. Hence, a comprehensive set of experiments have been carried out using rectangular plates with different dimensions and at various positions with respect to the vertical outlet pipe intakes and two different pipe diameters (D = 75 and... 

    A dislocation-based model considering free surface theory through HPT process: Nano-structured Ni

    , Article Scientia Iranica ; Volume 17, Issue 1 F , 2010 , Pages 52-59 ; 10263098 (ISSN) Hosseini, E ; Kazeminezhad, M ; Sharif University of Technology
    2010
    Abstract
    In this study, a dislocation-based model is presented for investigating the evolution of micro structure and mechanical properties of thin films during a wide range of straining. The model is applied to the High Pressure Torsion (HPT) process of thin nickel disks that provides valuable information on the evolution of material parameters during deformation. The model considers a free surface theory for thin films and can explain the size effect phenomenon in agreement with previous reported trends in literature  

    Towards simulation of 3D nonlinear high-speed vessels motion

    , Article Ocean Engineering ; Volume 36, Issue 3-4 , 2009 , Pages 256-265 ; 00298018 (ISSN) Panahi, R ; Jahanbakhsh, E ; Seif, M. S ; Sharif University of Technology
    2009
    Abstract
    A numerical simulation algorithm based on the finite volume discretisation is presented for analyzing ship motions. The algorithm employs a fractional step method to deal with the coupling between the pressure and velocity fields. The free surface capturing is fulfilled by using a volume of fluid method in which the interface between the liquid (water) and gas (air) phases are computed by solving a scalar transport equation for the volume fraction of the liquid phase. The computed velocity field is employed to evaluate the acting forces and moments on the vessel. Using the strategy of boundary-fitted body-attached mesh and calculating all six degrees-of-freedom of motion in each time step,... 

    Numerical modeling of turbulent surface wave motion using a coupled boundary element-finite difference technique

    , Article 2008 ASME Fluids Engineering Division Summer Conference, FEDSM 2008, Jacksonville, FL, 10 August 2008 through 14 August 2008 ; Volume 1, Issue PART B , 2009 , Pages 1025-1029 ; 9780791848418 (ISBN) Jamali, M ; Fluids Engineering Division, ASME ; Sharif University of Technology
    2009
    Abstract
    In this paper an effective numerical technique is presented to model turbulent motion of a standing surface wave in a tank. The equations of motion for turbulent boundary layers at the solid surfaces are coupled with the potential flow in the bulk of the fluid, and a mixed BEM-finite difference technique is used to obtain the wave and boundary layer characteristics. A mixing-length theory is used for turbulence modeling. The results are compared with previous experimental data. Although the technique is presented for a standing surface wave, it can be easily applied to other free surface problems. Copyright © 2008 by ASME  

    A unified computational method for simulating dynamic behavior of planing vessels

    , Article China Ocean Engineering ; Volume 23, Issue 3 , 2009 , Pages 517-528 ; 08905487 (ISSN) Seif, M. S ; Jahanbakhsh, E ; Panahi, R ; Karimi, M. H ; Sharif University of Technology
    2009
    Abstract
    High speed planing hulls have complex hydrodynamic behaviors. The trim angle and drafts are very sensitive to speed and location of the center of gravity. Therefore, motion simulation for such vessels needs a strong coupling between rigid body motions and hydrodynamic analysis. In addition, free surface should be predicted with good accuracy for each time step. In this paper, velocity and pressure fields are coupled by use of the fractional step method. On the basis of integration of the two-phase viscous flow induced stresses over the hull, acting loads (forces and moments) are calculated. With the strategy of boundary-fitted body-attached mesh and calculation of 6-DoF motions in each time... 

    Reduced order modeling of liquid sloshing in 3D tanks using boundary element method

    , Article Engineering Analysis with Boundary Elements ; Volume 33, Issue 6 , 2009 , Pages 750-761 ; 09557997 (ISSN) Dehghani Firouzabadi, R ; Haddadpour, H ; Ghasemi, M ; Sharif University of Technology
    2009
    Abstract
    This paper presents the application of reduced order modeling technique for investigation of liquid sloshing in three-dimensional tanks. The governing equations of sloshing are written using a boundary element formulation for incompressible potential flow. Then, the governing equations are reduced to a more efficient form that is represented only in terms of the velocity potential on the liquid free surface. This particular form is employed for eigen-analysis of fluid motion and the sloshing frequencies and mode shapes are determined. Then, the sloshing frequencies and the corresponding right- and left-eigenvectors are used along the modal analysis technique to find a reduced order model... 

    Catamaran motion simulation based on moving grid technique

    , Article Journal of Marine Science and Technology ; Volume 17, Issue 2 , 2009 , Pages 128-136 ; 10232796 (ISSN) Jahanbakhsh, E ; Panahi, R ; Seif, M. S ; Sharif University of Technology
    2009
    Abstract
    General purpose software is developed to simulate 6-DoF fluid-structure interaction in two-phase viscous flow. It is a VoF-fractional step solver based on the finite-volume discretization which uses a boundary-fitted body-attached hexahedral grid as the motion simulation strategy. As an application, a high-speed planing catamaran is simulated in steady forward motion as well as in turning maneuver. Results are compared with the available data and good qualitative and quantitative agreements are achieved. Numerical schemes and the solution algorithm of the software are consistent and show a good capability to model highly nonlinear ship motions. It can be further developed to represent a more... 

    Modified incompressible SPH method for simulating free surface problems

    , Article Fluid Dynamics Research ; Volume 40, Issue 9 , 2008 , Pages 637-661 ; 01695983 (ISSN) Ataie Ashtiani, B ; Shobeyri, G ; Farhadi, L ; Sharif University of Technology
    2008
    Abstract
    An incompressible smoothed particle hydrodynamics (I-SPH) formulation is presented to simulate free surface incompressible fluid problems. The governing equations are mass and momentum conservation that are solved in a Lagrangian form using a two-step fractional method. In the first step, velocity field is computed without enforcing incompressibility. In the second step, a Poisson equation of pressure is used to satisfy incompressibility condition. The source term in the Poisson equation for the pressure is approximated, based on the SPH continuity equation, by an interpolation summation involving the relative velocities between a reference particle and its neighboring particles. A new form... 

    A 3D BEM model for liquid sloshing in baffled tanks

    , Article International Journal for Numerical Methods in Engineering ; Volume 76, Issue 9 , June , 2008 , Pages 1419-1433 ; 00295981 (ISSN) Dehghani Firouz Abadi, R ; Haddadpour, H ; Noorain, M. A ; Ghasemi, M ; Sharif University of Technology
    2008
    Abstract
    The present work aims at developing a boundary element method to determine the natural frequencies and mode shapes of liquid sloshing in 3D baffled tanks with arbitrary geometries. Green's theorem is used with the governing equation of potential flow and the walls and free surface boundary conditions are applied. A zoning method is introduced to model arbitrary arrangements of baffles. By discretizing the flow boundaries to quadrilateral elements, the boundary integral equation is formulated into a general matrix eigenvalue problem. The governing equations are then reduced to a more efficient form that is merely represented in terms of the potential values of the free surface nodes, which... 

    Free water surface oscillations in a closed rectangular basin with internal barriers

    , Article Scientia Iranica ; Volume 15, Issue 3 , Volume 15, Issue 3 , 2008 , Pages 315-322 ; 10263098 (ISSN) Kabiri Samani, A. R ; Ataie Ashtiani, B ; Sharif University of Technology
    Sharif University of Technology  2008
    Abstract
    Thee enclosed basin has certain natural frequencies of seiche, depending on the geometry of the water boundaries and the bathymetry of water depths. Therefore, the variation in the water surface at a point becomes irregular, as caused by the combination of several natural frequencies, which may be considered as the superposition of sinusoidal frequency components of different amplitude. This paper is mainly concerned with the motion of an incompressible irrotational fluid in a closed rectangular basin with internal impervious barriers. An analytical solution is presented for predicting the characteristic of generated waves in these types of basin. The equations of free water surface...