Loading...
Search for: fully-coupled
0.007 seconds
Total 41 records

    Numerical-probabilistic modeling of the liquefaction-induced free fields settlement

    , Article Soil Dynamics and Earthquake Engineering ; Volume 149 , 2021 ; 02677261 (ISSN) Sadeghi, H ; Pak, A ; Pakzad, A ; Ayoubi, P ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Liquefaction is a phenomenon through which saturated sandy soil loses its shear strength and turns into a liquefied state. One of the most detrimental consequences of liquefaction is the reconsolidation volumetric settlements after the earthquakes, which is due to the dissipation of excess pore pressure caused by earthquakes. Severe floods can follow these settlements in free fields such as grounds close to the sea or rivers. Several researchers studied this phenomenon using data obtained from experiments in the lab or observations in the fields. Previous works were mainly based on a limited number of experimental observations and considered loadings and boundary conditions that were... 

    Interface effects on the electromagnetic radiation emanating from an embedded piezoelectric nano-fiber incident upon by SH-waves

    , Article Wave Motion ; Volume 94 , April , 2020 Taheri Jam, M ; Shodja, H. M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The multiphysics process of the electromagnetic (EM) radiation induced from an embedded nanofiber scatterer subjected to SH-waves is of interest. By discarding the commonly employed electroquasistatic approximation, the fully-coupled elastodynamics and Maxwell's equations have been solved simultaneously within the mathematical framework of piezoelectric surface elasticity theory. Certain subtleties regarding the introduced interface characteristic lengths that make the examination of the size effect on the EM radiated power, scattering cross section, fundamental resonance frequency, and distribution of the magnetic field possible will be discussed. The obtained results can be helpful for... 

    Fully coupled analysis of interaction between the borehole and pre-existing fractures

    , Article International Journal of Rock Mechanics and Mining Sciences ; Volume 89 , 2016 , Pages 151-164 ; 13651609 (ISSN) Gomar, M ; Goodarznia, I ; Shadizadeh, S. R ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The coupling of rock and thermal stresses along with fluid pressure are particularly important in fractured rock masses, since stress-induced changes in permeability can be large and irreversible under perturbations resulting from various natural and induced activities. A new method is presented to model fracture permeability changes during drilling in fractured rocks. The approach includes finite element method (FEM) for fully coupled thermo-poroelastic analysis of stress distribution around borehole and displacement discontinuity method (DDM) to model fracture deformation. Three cases of overbalanced, underbalanced, and balanced drilling fluid pressure conditions are employed. The... 

    Numerical investigation of the effects of geometric and seismic parameters on liquefaction-induced lateral spreading

    , Article Soil Dynamics and Earthquake Engineering ; Volume 89 , 2016 , Pages 233-247 ; 02677261 (ISSN) Ghasemi Fare, O ; Pak, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    The lateral movement of a liquefiable soil layer on gentle slopes is the most visible and devastating type of liquefaction-induced ground failure. Recent earthquakes have shown that this phenomenon causes severe damages to coastal structures, pier of the bridges and life-lines by exerting large lateral forces on the structures. In this paper coupled dynamic field equations of extended Biot's theory with u-p formulation are used for simulating the phenomenon and the soil behavior is modeled by a critical state two-surface plasticity model for sands. Furthermore, in this study variation of permeability coefficient during liquefaction is taken into account. The permeability coefficient is... 

    Numerical investigation on the behavior of the gravity waterfront structures under earthquake loading

    , Article Ocean Engineering ; Volume 106 , September , 2015 , Pages 152-160 ; 00298018 (ISSN) Khosrojerdi, M ; Pak, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Abstract Lateral Spreading, which usually occurs as a consequence of liquefaction in gently sloped loose saturated sand layers, is known to be a major source of earthquake-induced damages to structures such as quay walls, bridge piers, pipelines, and highway/railways. Therefore evaluation of the liquefaction potential and using appropriate methods for prediction of the adverse consequences of lateral spreading is of great importance. In this study, numerical modeling has been used to study lateral spreading phenomenon behind rigid waterfront structures. Coupled dynamic field equations of the extended Biot's theory with u-P formulation are used for simulating the phenomenon. A fully coupled... 

    A comparison of finite volume formulations and coupling strategies for two-phase flow in deforming porous media

    , Article Computers and Geotechnics ; Volume 67 , 2015 , Pages 17-32 ; 0266352X (ISSN) Asadi, R ; Ataie Ashtiani, B ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In this paper a locally mass conservative finite volume method is employed to model the one-dimensional, two-phase immiscible flow in a poroelastic media. Since, an appropriate choice of primary variables is critical in simulating multiphase subsurface flow, depending on such a choice, the governing equations can be expressed in different forms. By implementing Picard iteration to a highly nonlinear system of equations, three numerical models including pressure form, mixed form and mixed form with a modified Picard linearization are developed in this study. These models have been evaluated in terms of stability, convergence and mass conservation in various one-dimensional test cases.... 

    Hydro-mechanical modeling of cohesive crack propagation in multiphase porous media using the extended finite element method

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 37, Issue 10 , 2013 , Pages 1247-1279 ; 03639061 (ISSN) Mohammadnejad, T ; Khoei, A. R ; Sharif University of Technology
    2013
    Abstract
    SUMMARY: In this paper, a numerical model is developed for the fully coupled hydro-mechanical analysis of deformable, progressively fracturing porous media interacting with the flow of two immiscible, compressible wetting and non-wetting pore fluids, in which the coupling between various processes is taken into account. The governing equations involving the coupled solid skeleton deformation and two-phase fluid flow in partially saturated porous media including cohesive cracks are derived within the framework of the generalized Biot theory. The fluid flow within the crack is simulated using the Darcy law in which the permeability variation with porosity because of the cracking of the solid... 

    Prediction of particle deposition in the respiratory track using 3D-1D modeling

    , Article Scientia Iranica ; Volume 19, Issue 6 , December , 2012 , Pages 1479-1486 ; 10263098 (ISSN) Monjezi, M ; Dastanpour, R ; Saidi, M. S ; Pishevar, A. R ; Sharif University of Technology
    2012
    Abstract
    Airflow simulation of the whole respiratory system is still unfeasible due to the geometrical complexity of the lung airways and the diversity of the length scales involved in the problem. Even the new CT imaging system is not capable of providing accurate 3D geometries for smaller tubes, and a complete 3D simulation is impeded by the limited computational resources available. The aim of this study is to develop a fully coupled 3D-1D model to make accurate prediction of airflow and particle deposition in the whole respiratory track, with reasonable computational cost and efficiency. In the new proposed method, the respiratory tree is divided into three parts to be dealt with using different... 

    Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method

    , Article Computers and Geotechnics ; Volume 46 , 2012 , Pages 75-83 ; 0266352X (ISSN) Samimi, S ; Pak, A ; Sharif University of Technology
    2012
    Abstract
    Meshless methods are a relatively new type of numerical methods that have attracted the attention of many researchers over the past years. So far, a number of meshless methods have been developed and applied to solve problems in various fields of engineering, including solid mechanics and geotechnical problems. The Element-Free Galerkin (EFG) method is adopted in this study for solving the governing partial differential equations of equilibrium and continuity of pore fluid flow for numerical simulation of coupled hydro-mechanical problems. For this purpose, the weak form of the governing equations is derived by applying the weighted residual method and Galerkin technique. The penalty method... 

    Investigation of the influence of permeability coefficient on the numerical modeling of the liquefaction phenomenon

    , Article Scientia Iranica ; Volume 19, Issue 2 , 2012 , Pages 179-187 ; 10263098 (ISSN) Rahmani, A ; Ghasemi Fare, O ; Pak, A ; Sharif University of Technology
    2012
    Abstract
    The soil permeability coefficient plays a key role in the process of numerical simulation of the liquefaction phenomenon. Liquefaction causes a considerable increase in soil permeability, due to the creation of easier paths for water flow. The work presented in this paper tries to investigate the effects of permeability coefficient on the results of numerical modeling of the liquefaction phenomenon. To do this, a fully coupled (u-P) formulation is employed to analyze soil displacements and pore water pressures. Two different versions of a well-calibrated critical state bounding surface plasticity model, which possesses the capability to utilize a single set of material parameters for a wide... 

    Evaluation of variation of permeability in liquefiable soil under earthquake loading

    , Article Computers and Geotechnics ; Volume 40 , 2012 , Pages 74-88 ; 0266352X (ISSN) Shahir, H ; Pak, A ; Taiebat, M ; Jeremić, B ; Sharif University of Technology
    2012
    Abstract
    Liquefaction phenomenon is usually accompanied by large amounts of settlement owing to disruption of soil structure. In addition to that, large settlement also occurs by a significant increase in soil permeability during seismic excitation. To properly simulate the post-liquefaction settlement, it is important to take the compressibility properties of the liquefied sand as well as the permeability increase into account. Using initial permeability coefficient in the course of simulation of liquefaction leads to underestimation of settlement. In addition to that, using unrealistic values for permeability may cause erroneous predictions of other aspects of soil behavior. Therefore, an accurate... 

    Consistent arbitrary Lagrangian Eulerian formulation for large deformation thermo-mechanical analysis

    , Article Materials and Design ; Volume 31, Issue 8 , 2010 , Pages 3690-3702 ; 02641275 (ISSN) Tadi Beni, Y ; Movahhedy, M. R ; Sharif University of Technology
    2010
    Abstract
    Arbitrary Lagrangian Eulerian (ALE) method is widely used for simulation of large deformation problems, such as metal forming. However, in many such applications, modeling of the heat generation and transfer in conjunction with the stress analysis is necessary. In this work, a fully coupled dynamic ALE formulation is developed. The ALE form of energy balance equation is derived, and is coupled with the dynamic, rate dependent ALE stress analysis. The proposed formulation is used for simulation of a few thermo-mechanical problems. The effectiveness and efficiency of the ALE method is verified by comparing the results of this simulation with available experimental and numerical results  

    Estimating liquefaction-induced settlement of shallow foundations by numerical approach

    , Article Computers and Geotechnics ; Volume 37, Issue 3 , April , 2010 , Pages 267-279 ; 0266352X (ISSN) Shahir, H ; Pak, A ; Sharif University of Technology
    2010
    Abstract
    Occurrence of liquefaction in saturated sand deposits underlying foundation of structure can cause a wide range of structural damages starting from minor settlement, and ending to general failure due to loss of bearing capacity. If the bearing capacity failure is not the problem, reliable estimation of the liquefaction-induced settlement will be of prime importance in assessment of the overall performance of the structure. Currently, there are few procedures with limited application in practice for estimation of settlement of foundations on liquefied ground. Therefore, development of a general relationship is important from the practical viewpoint. In this paper, the dynamic response of... 

    Direct design of branched ducts

    , Article Scientia Iranica ; Volume 16, Issue 2 B , 2009 , Pages 111-120 ; 10263098 (ISSN) Ghadak, F ; Taiebi Rahni, M ; Ashrafizadeh, A ; Sharif University of Technology
    2009
    Abstract
    A fully coupled formulation of thermo-fluid shape design problems has recently been developed in which the unknown nodal coordinates appear explicitly in the formulation of the problem. This "direct design" approach is, in principle, generally applicable and has been successfully applied in the context of potential and Euler flow models. This paper focuses on the direct design of ducts using the ideal flow model and may be considered as an addendum to the paper entitled "Direct Design of Ducts" [1]. However, a cell-vertex finite volume method is used and a different boundary condition implementation technique is applied, as compared to the method presented in the previous paper. The other... 

    Rate-dependent dynamic ALE analysis of finite deformation of elasto-viscoplastic solids

    , Article Materials and Design ; Volume 30, Issue 8 , 2009 , Pages 2995-3004 ; 02641275 (ISSN) Tadi Beni, Y ; Movahhedy, M. R ; Farrahi, G. H ; Sharif University of Technology
    2009
    Abstract
    In this paper, formulation and implementation of finite element analysis within an Arbitrary Lagrangian Eulerian (ALE) description is presented for large deformation analysis of elasto-viscoplastic materials. The rate effects are included using a consistent procedure. An implicit algorithm with backward Euler integration scheme is used to integrate the elasto-viscoplastic constitutive equations. Also, the closed form of the consistent tangent operator is derived using the momentum balance equation to reduce the computation time. A fully coupled ALE procedure is used which includes dynamic effects. The proposed algorithm is implemented in an ALE code and its effectiveness and efficiency is... 

    A discretized analytical solution for fully coupled non-linear simulation of heat and mass transfer in poroelastic unsaturated media

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 33, Issue 13 , 2009 , Pages 1589-1611 ; 03639061 (ISSN) Arfaei Malekzadeh, F ; Pak, A ; Sharif University of Technology
    2009
    Abstract
    Mathematical simulation of non-isothermal multiphase flow in deformable unsaturated porous media is a complicated issue because of the need to employ multiple partial differential equations, the need to take into account mass and energy transfer between phases and because of the non-linear nature of the governing partial differential equations. In this paper, an analytical solution for analyzing a fully coupled problem is presented for the one-dimensional case where the coefficients of the system of equations are assumed to be constant for the entire domain. A major issue is the non-linearity of the governing equations, which is not considered in the analytical solution. In order to... 

    Numerical investigation of the effects of soil densification on the reduction of liquefaction-induced settlement of shallow foundations

    , Article Scientia Iranica ; Volume 16, Issue 4 A , 2009 , Pages 331-339 ; 10263098 (ISSN) Shahir, H ; Pak, A ; Sharif University of Technology
    2009
    Abstract
    The liquefaction phenomenon is usually accompanied by a large amount of settlement. Based on the observations made in past earthquakes, ground improvement by densification is one of the most useful approaches to reduce the liquefaction-induced settlement. Currently, there is no analytical solution for evaluation of the amount of settlement and tilting of footings that are constructed on densified ground surrounded by liquefiable soil. A number of factors, such as underlying soil properties, dimensions of the footing and earthquake loading characteristics, cause the problem to become complicated. In this paper, the dynamic response of shallow foundations on both liquefiable and... 

    Study of pore pressure variation during liquefaction using two constitutive models for sand

    , Article Soil Dynamics and Earthquake Engineering ; Volume 27, Issue 1 , 2007 , Pages 60-72 ; 02677261 (ISSN) Taiebat, M ; Shahir, H ; Pak, A ; Sharif University of Technology
    2007
    Abstract
    Numerical analyses of liquefiable sand are presented in this paper. Liquefaction phenomenon is an undrained response of saturated sandy soils when they are subjected to static or dynamic loads. A fully coupled dynamic computer code is developed to predict the liquefaction potential of a saturated sandy layer. Coupled dynamic field equations of extended Biot's theory with u-P formulation are used to determine the responses of pore fluid and soil skeleton. Generalized Newmark method is employed for integration in time. The soil behavior is modelled by two constitutive models; a critical state two-surface plasticity model, and a densification model. A class 'B' analysis of a centrifuge... 

    Behavior of dry and saturated soils under impact load during dynamic compaction

    , Article 16th International Conference on Soil Mechanics and Geotechnical Engineering: Geotechnology in Harmony with the Global Environment, ICSMGE 2005, Osaka, 12 September 2005 through 16 September 2005 ; Volume 3 , 2005 , Pages 1245-1248 ; 9059660285 (ISBN); 9789059660281 (ISBN) Pak, A ; Shahir, H ; Ghassemi, A ; Sharif University of Technology
    2005
    Abstract
    Dynamic compaction is a widely used soil improvement method in dry and/or saturated soils. Despite its vast application, its design basis is still empirical and the mechanisms that are involved in the procedure are not fully understood. A fully coupled dynamic finite element code has been developed in order to clarify the ambiguities in the process and predict the strain/displacement field in the ground, determine depth and degree of improvement, and also calculate the pore pressure variation during the process. This model can be used as a rational design tool for dynamic compaction projects  

    Numerical Simulation of Hydraulic Fracturing in Porous Media Considering Two Phase Flow and Thermal Effects Using Mesh-less XEFG Method

    , Ph.D. Dissertation Sharif University of Technology Iranmanesh, Mohammad Ali (Author) ; Pak, Ali (Supervisor)
    Abstract
    In this study, a fully coupled three-dimensional numerical analysis of two-phase fluid flow and heat transfer through deformable porous media is presented in the context of extended element free Galerkin method. By coupling momentum balance equation for the whole mixture, continuity equations of wetting and non-wetting fluid phases and energy balance equation, the developed numerical algorithm is capable of simulating a wide range of engineering problems such as CO2 sequestration, nuclear waste disposal in deep underground strata, hydraulic fracturing in oil and gas reservoirs and so on.By taking the advantages of partition of unity property of MLS shape functions, weak and strong...