Loading...
Search for: gas-permeability
0.011 seconds
Total 69 records

    Effect of EVA, Nano-clay and Mixing Sequence on Physical and Mechanical Properties of High Density Polyethylene

    , M.Sc. Thesis Sharif University of Technology Babaienejad, Moein (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    Blending different polymers to achieve a compound with modified Physical physical and mechanical properties, has interested researchers for years. Among all, LDPE and HDPE have attracted a great attention for this purpose; specially when a mineral filler like clay is another part of composite. In the related literature, it is proven that small amounts of clay can improve physical and mechanical properties in comparison to virgin blend. Focus of this research is on HDPE/EVA/Clay nanocomposite and its physical and mechanical properties. Having vinyl group, EVA is a compatibilizer that makes clay to disperse better; EVA can also makes the brittle HDPE tougher. At first, HDPE/EVA blend... 

    Impermeability of Oxygen in Passive/Active Polyethylene Nanocomposite Films

    , Ph.D. Dissertation Sharif University of Technology Khederlou, Khadijeh (Author) ; Bagheri, Reza (Supervisor) ; Shojaei, Akbar (Supervisor)
    Abstract
    In this study, polyethylene films made of LDPE / LLPE / reinforced with mechanical barrier of clay and reactant of iron nanoparticles were made in their optimal combination and necessary improvements were made on them. Investigations show that, independent of volume fraction, the addition of spherical nanoparticles does not have much effect on reducing the polymer matrix’s permeability. In nanocomposites containing cylindrical particles, for considerable reduction of the permeability, over 20 volume percent of nanoparticles it is required, while in platelet nanoparticles, less than 10% vol is sufficient. In clays with modifier concentration above the cation exchange capacity, there is less... 

    Oxygen-barrier properties of poly(lactic acid)/poly(vinyl acetate-co-vinyl alcohol) blends as biodegradable films

    , Article Journal of Applied Polymer Science ; Volume 125, Issue SUPPL. 2 , September , 2012 , Pages E20-E26 ; 00218995 (ISSN) Razavi, S. M ; Dadbin, S ; Frounchi, M ; Sharif University of Technology
    Wiley  2012
    Abstract
    The oxygen-barrier properties of poly(lactic acid) (PLA)/poly(vinyl acetate-co-vinyl alcohol) [P(VAc-co-VA)] were investigated. P(VAc-co-VA)s with vinyl alcohol (VA) contents of 5, 10, and 15 mol % were prepared with the acid-catalyzed hydrolysis of poly(vinyl acetate). The obtained copolymers with various contents of VA were blended with PLA at 5/95, 10/90, and 15/85 compositions. Films of the blends were prepared by a solution-casting method with chloroform as the cosolvent. Although the blend with 5% VA in the copolymer appeared to be miscible, the blends with 10 and 15% VA content in the copolymer were immiscible, as verified by dynamic mechanical analysis. The oxygen-barrier properties... 

    Numerical simulation of salt water passing mechanism through nanoporous single-layer graphene membrane

    , Article Chemical Product and Process Modeling ; Volume 11, Issue 1 , 2016 , Pages 73-76 ; 21946159 (ISSN) Chogani, A ; Moosavi, A ; Rahiminejad, M ; Sharif University of Technology
    Walter de Gruyter GmbH  2016
    Abstract
    In recent years carbon nanotubes and other carbon nanostructures such as graphene sheets have attracted a lot of attention due to their unique mechanical, thermal and electrical properties. These structures can be used in desalination of sea water, removal of hazardous substances from water tanks, gases separation, and so on. The nanoporous single layer graphene membranes are very efficient for desalinating water due to their very low thickness. In this method, water-flow thorough the membrane and salt rejection strongly depend on the applied pressure and size of nanopores that are created in graphene membrane. In this study, the mechanism of passing water and salt ions through nanoporous... 

    A flat polymeric membrane sensor for carbon dioxide/nitrogen gas mixture

    , Article Chemical Engineering Communications ; Volume 204, Issue 4 , 2017 , Pages 445-452 ; 00986445 (ISSN) Shabani, E ; Mousavi, S. A ; Shojaei, A ; Sharif University of Technology
    Taylor and Francis Ltd  2017
    Abstract
    A gas sensor was developed to measure the concentration of binary gas mixtures. This sensor works based on the permeability change of different gas mixtures across the polymeric membranes. Although high values of permeability and selectivity are needed for an ideal separation, the performance of this sensor mainly depends on the permeability factor. Polysulfone and silicone rubber were applied as the membrane base and coat, respectively. Moreover, in contrast to existing polymeric sensors that use hollow fibers, the present sensor is made of flat membranes. This new design is cheaper, smaller, and easier to use in comparison to the hollow fiber polymeric sensors. In order to test the sensor... 

    Fabrication and evaluation of nanocomposite membranes of polyethersulfone/α-alumina for hydrogen separation

    , Article Iranian Polymer Journal (English Edition) ; Volume 24, Issue 3 , 2015 , Pages 171-183 ; 10261265 (ISSN) Farrokhnia, M ; Rashidzadeh, M ; Safekordi, A ; Khanbabaei, G ; Sharif University of Technology
    Springer-Verlag London Ltd  2015
    Abstract
    In this study, polyethersulfone (PES)-based nanocomposite membranes with the incorporation of inorganic filler of α-alumina were prepared via thermal phase inversion method. The fabricated flat sheet-mixed matrix membranes were characterized using X-ray diffraction, thermal gravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and atomic force microscope analysis, and the permeation tests were performed for hydrogen, nitrogen and carbon dioxide. Also prepared α-alumina particles were identified by X-ray diffraction and the surface area, total pore volume and average pore diameter of particles were measured with a high-speed gas-sorption analyzer. The... 

    Development of porous nanocomposite membranes for gas separation by identifying the effective fabrication parameters with Plackett–Burman experimental design

    , Article Journal of Porous Materials ; Volume 23, Issue 5 , 2016 , Pages 1279-1295 ; 13802224 (ISSN) Farrokhnia, M ; Safekordi, A ; Rashidzadeh, M ; Khanbabaei, G ; Akbari Anari, R ; Rahimpour, M ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    In this research, Plackett–Burman experimental design was used as a screening method to investigate seven processing factors in the preparation of new polyethersulfone based porous nanocomposite membrane. Polymer concentration, nanoparticle type, nanoparticle concentration, solvent type, solution mixing time, evaporation time, and annealing temperature are variables that were evaluated to fabricate mixed matrix membranes using the evaporation phase inversion method for gas separation. According to obtained results, polymer concentration, nanoparticle concentration, solution mixing time, and evaporation time processing factors had significant effects on gas permeation. In addition, the... 

    Property Investigation of Poly (Ethylene Co-vinyl Acetate)/Poly (l-Lactic Acid)/Organo Clay Nanocomposites

    , Article Journal of Polymers and the Environment ; Volume 27, Issue 12 , 2019 , Pages 2886-2894 ; 15662543 (ISSN) Torabi, H ; Ramazani SaadatAbadi, A ; Sharif University of Technology
    Springer New York LLC  2019
    Abstract
    In this study, EVAc/PLA/organo clay nanocomposites were prepared via solution mixing method. The SEM images were used to investigate the morphology of nanocomposites revealing no phase separation or agglomeration of disperse phase in EVAc/PLA blends and nanocomposites. SAXS spectra confirmed the intercalated morphology of nanocomposites. Soil burial test were carried out and the rate of degradation of the samples were measured indirectly. Oxygen gas permeability of EVAc was slightly decreased by adding PLA to the matrix, when small loads of clay caused dramatic improvement in barrier properties. Melt rheological frequency sweep test illustrated the compatibility of EVAc with low contents of... 

    Gas separation properties of crosslinked and non-crosslinked carboxymethylcellulose (CMC) membranes

    , Article Scientia Iranica ; Volume 20, Issue 6 , 2013 , Pages 1921-1928 ; 10263098 (ISSN) Miremadi, S. I ; Shafiabadi, N ; Mousavi, S. A ; Amini-Fazl, M. S ; Sharif University of Technology
    Sharif University of Technology  2013
    Abstract
    In this study, crosslinked and non-crosslinked carboxymethylcellulose (CMC) membranes were prepared with different concentrations of polymer. Then, the permeability of pure CO2, N2, and CH4 was measured through these membranes in dry state to investigate the influence of polymer concentration and applied feed pressure on permeability and permselectivity. The permeability of CO2 through membranes was higher than the other gases. A comparison of permeabilities revealed that the permeability of N2, CO2, and CH4 increased on an average of 33, 40 and 20 percent, respectivly, by increasing the feed pressure from 6 to 10... 

    Fabrication of MEA based on sulfonic acid functionalized carbon supported platinum nanoparticles for oxygen reduction reaction in PEMFCs

    , Article RSC Advances ; 2015 , Pages 85775-85784 ; 20462069 (ISSN) Gharibi, H ; Yasi, F ; Kazemeini, M ; Heydari, A ; Golmohammadi, F ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    The Nafion ionomer affects the efficiency of the platinum (Pt) catalyst by blocking the active sites thereby restricting the gas permeability of the catalyst layer; but, there is a limitation in the quantity of Nafion ionomer that needs to be added without affecting the cell performance. Sulfonation of carbon-supported catalysts as mixed electronic and protonic conductors has been reported to be an efficient way to increase the triple-phase boundaries. In order to improve the utilization and activity of cathodic catalysts in the oxygen reduction reaction (ORR), Pt nanoparticles were loaded on a mixture of Vulcan XC-72R and MWCNTs, which were functionalized in a mixture of 96% sulfuric acid... 

    Improving mixed-matrix membrane performance: Via PMMA grafting from functionalized NH2-UiO-66

    , Article Journal of Materials Chemistry A ; Volume 6, Issue 6 , 2018 , Pages 2775-2791 ; 20507488 (ISSN) Molavi, H ; Shojaei, A ; Mousavi, S. A ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    The major obstacles in gas separation by mixed-matrix membranes (MMMs) are poor dispersion and poor affinity between polymers and fillers. The present study demonstrates that these challenges can be overcome appropriately by utilizing a series of synthesized stand-alone MMMs. The matrix used was polymethyl methacrylate (PMMA) and the MMMs were synthesized by in situ polymerization of methyl methacrylate (MMA) in the presence of UiO-66, NH2-UiO-66 and vinyl group attached UiO-66. In situ polymerization of MMA in the presence of vinyl attached UiO-66 resulted in PMMA grafted UiO-66 with a high degree of grafting. Microscopic analysis by field emission scanning electron microscopy (FESEM)... 

    Amino-silane-grafted NH2-MIL-53(Al)/polyethersulfone mixed matrix membranes for CO2/CH4 separation

    , Article Dalton Transactions ; Volume 48, Issue 36 , 2019 , Pages 13555-13566 ; 14779226 (ISSN) Ahmadijokani, F ; Ahmadipouya, S ; Molavi, H ; Arjmand, M ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    Mixed-matrix membranes (MMMs) are promising candidates for carbon dioxide separation. However, their application is limited due to improper dispersion of fillers within the polymer matrix, poor interaction of fillers with polymer chains, and formation of defects and micro-voids at the interface of both phases, which all result in the decline of the gas separation performance of MMMs. In this work, we present a new method to overcome these challenges. To this end, a series of MMMs based on polyethersulfone (PES) as the continuous polymer matrix and MIL-53-derived MOFs as the dispersed filler were prepared. FTIR-ATR, XRD, TGA, FESEM, and N2 adsorption/desorption analyses were employed to... 

    Gas permeation and sorption properties of poly(amide-12-b-ethyleneoxide)(Pebax1074)/SAPO-34 mixed matrix membrane for CO2/CH4 and CO2/N2 separation

    , Article Journal of Industrial and Engineering Chemistry ; Volume 27 , July , 2015 , Pages 223-239 ; 1226086X (ISSN) Rabiee, H ; Meshkat Alsadat, S ; Soltanieh, M ; Mousavi, S. A ; Ghadimi, A ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2015
    Abstract
    Zeolite SAPO-34 was used for fabrication of mixed matrix membranes (MMMs) to improve the CO2/CH4/N2 gas separation performance of the neat Pebax1074 membrane. Permeability and selectivity of the MMMs were studied at different temperatures of 25-65°C and pressures of 4-24 bars. Also sorption of different gases in MMMs was measured at 35°C and different pressures, which showed enhanced solubility coefficients. Moreover, thermal, morphological and mechanical properties of MMMs were characterized by differential scanning calorimetry (DSC), scanning electron microscope (SEM) and tensile analysis. The results showed excellent improvement in... 

    Applicability of membrane reactor technology in industrial hydrogen producing reactions: Current effort and future directions

    , Article Journal of Industrial and Engineering Chemistry ; Volume 104 , 2021 , Pages 212-230 ; 1226086X (ISSN) Mamivand, S ; Binazadeh, M ; Sohrabi, R ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2021
    Abstract
    Potent carbon-neutral energy carriers bring a vital solution for sustained industrialization and environmental protection. Hydrogen as a novel zero-emission energy carrier offers more than twice energy per unit mass compared to other fuels. Membrane reactor technology transforms gray hydrogen to blue by selective hydrogen separation and carbon dioxide capture from the product mixture. Moreover, improved reactant conversion during reversible steam reforming of methane, methanol, and ethanol; water gas-shift; and dehydrogenation of cyclic and aliphatic hydrocarbons as well as enhanced hydrogen yield are results of selective and distributed hydrogen separation from membrane reactor. In this... 

    LDPE/EVA/graphene nanocomposites with enhanced mechanical and gas permeability properties

    , Article Polymers for Advanced Technologies ; Volume 26, Issue 9 , 2015 , Pages 1083-1090 ; 10427147 (ISSN) Tayebi, M ; Ramazani S. A ; Hamed Mosavian, M. T ; Tayyebi, A ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    In the present work, graphene oxide (GO) and reduced graphene oxide (RGO) were incorporated at low-density polyethylene (LDPE)/ethylene vinyl acetate (EVA) copolymer blend using solution casting method. Monolayer GO with 1-nm thickness and good transparency was synthesized using the well-known Hummers's method. Fourier transform infrared and X-ray photoelectron spectroscopy data exhibited efficient reduction of GO with almost high C/O ratio of RGO. Scanning electron microscopy showed the well distribution of GO and RGO within LDPE/EVA polymer matrix. The integrating effects of GO and RGO on mechanical and gas permeability of prepared films were examined. Young's modulus of nanocomposites are... 

    Effect of reactive diluent on gas separation behavior of photocurable acrylated polyurethane composite membranes

    , Article Journal of Applied Polymer Science ; Volume 137, Issue 3 , 15 January , 2020 Molavi, H ; Shojaei, A ; Mousavi, S. A ; Ahmadi, S. A ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Abstract
    In this study, the effects of the type and content of reactive diluents on the permeation/separation of carbon dioxide/nitrogen (CO2/N2) through acrylate-terminated polyurethane (APU)-acrylate/acrylic diluent (APUA) composite membranes was investigated. A series of APUs based on poly(ethylene glycol) (PEG)-1000 g mol−1, toluene diisocyanate, and 2-hydroxyethyl methacrylate was synthesized and then diluted with several reactive diluents. The results obtained from differential scanning calorimetry (DSC) and Fourier transform infrared analyses showed that the microphase interference of hard and soft segments increased with increasing reactive diluent content. Furthermore, with increasing alkene... 

    CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization

    , Article Chemical Engineering Research and Design ; Volume 176 , 2021 , Pages 49-59 ; 02638762 (ISSN) Ahmadipouya, S ; Ahmadijokani, F ; Molavi, H ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Institution of Chemical Engineers  2021
    Abstract
    In this study, NH2-MIL-101(Al) metal-organic frameworks (MOFs) covered with 3-aminopropyltriethoxysilane (APTES) were incorporated into the polyethersulfone (PES) to produce mixed-matrix membranes (MMMs) for CO2 separation. The APTES functionalization was performed to improve the MOF dispersion in the PES matrix. Different analyses such as X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM) revealed that the MOFs surface successfully functionalized with APTES. An improvement in CO2/CH4 separation efficiency was observed in MMMs, and the performance... 

    CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization

    , Article Chemical Engineering Research and Design ; Volume 176 , 2021 , Pages 49-59 ; 02638762 (ISSN) Ahmadipouya, S ; Ahmadijokani, F ; Molavi, H ; Rezakazemi, M ; Arjmand, M ; Sharif University of Technology
    Institution of Chemical Engineers  2021
    Abstract
    In this study, NH2-MIL-101(Al) metal-organic frameworks (MOFs) covered with 3-aminopropyltriethoxysilane (APTES) were incorporated into the polyethersulfone (PES) to produce mixed-matrix membranes (MMMs) for CO2 separation. The APTES functionalization was performed to improve the MOF dispersion in the PES matrix. Different analyses such as X-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and field emission scanning electron microscopy (FESEM) revealed that the MOFs surface successfully functionalized with APTES. An improvement in CO2/CH4 separation efficiency was observed in MMMs, and the performance... 

    Experimental investigation of near miscibility effect on relative permeability curves

    , Article 74th European Association of Geoscientists and Engineers Conference and Exhibition 2012 Incorporating SPE EUROPEC 2012: Responsibly Securing Natural Resources, 4 June 2012 through 7 June 2012 ; June , 2012 , Pages 5469-5474 ; 9781629937908 (ISBN) Parvazdavani, M ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    European Association of Geoscientists and Engineers, EAGE  2012
    Abstract
    The requirement of reliable relative permeability data is more intensified when the miscibility condition approaches. In this work the relative permeability of CO2 and oil has been measured at different miscibility conditions using conventional methods. Fractured dolomite and sandstone core plugs samples were used in the experiments. Due to some errorful assumptions of conventional methods such as immiscible, incompressible displacement, inverse modeling was used for predicting the reliable relative permeability of oil and gas phases at near miscible condition from measured oil production and pressure drop data. The initial guesses of relative permeabilities were provided from conventional... 

    Near wellbore thermal effects in a tight gas reservoir: Impact of different reservoir and fluid parameters

    , Article Journal of Unconventional Oil and Gas Resources ; Volume 16 , 2016 , Pages 1-13 ; 22133976 (ISSN) Shad, S ; Holmgrün, C ; Calogirou, A ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Temperature changes in and around the wellbore could lead to significant well performance and flow assurance issues. Despite its importance, near wellbore temperature change due to gas production and its importance on well performance is not well understood. Reduction of temperature in the near well bore section, could potentially lead to hydrate formation and as a result reduction of well performance. This work is aimed at evaluating the thermal behaviour in the near wellbore region of a low to tight permeability gas reservoir (ranging between 0.02 and 10 mD) during its natural depletion. The study is conducted by using a thermal-compositional simulator. The process required to simulate...