Loading...
Search for: gas-wells
0.011 seconds

    Solar generated steam injection in HAMCA, Venezuelan extra heavy oil reservoir; Simulation study for oil recovery performance, economical and environmental feasibilities

    , Article EUROPEC 2015, 1 June 2015 through 4 June 2015 ; 2015 , Pages 1176-1202 ; 9781510811621 (ISBN) Mirzaie Yegane, M ; Ayatollahi, S ; Bashtani, F ; Romero, C ; Sharif University of Technology
    Society of Petroleum Engineers  2015
    Abstract
    Application of solar energy compared to conventional gas-burning boilers for steam generation in thermal Enhanced Oil Recovery processes is a newly attended technology, which brings significant benefits to the petroleum industry through environmental and economical aspects. This technique is especially designed for the regions in which gas-burning steam generation is not viable in large scale. The objective of this study is to investigate about viability of using solar energy to generate steam instead of using conventional steam generators in a Venezuelan extra heavy oil reservoir. Limited gas production policy of the Venezuelan government is the major challenge for utilizing gas steam... 

    Soft computing method for prediction of co2 corrosion in flow lines based on neural network approach

    , Article Chemical Engineering Communications ; Volume 200, Issue 6 , 2013 , Pages 731-747 ; 00986445 (ISSN) Chamkalani, A ; Nareh'ei, M. A ; Chamkalani, R ; Zargari, M. H ; Dehestani Ardakani, M. R ; Farzam, M ; Sharif University of Technology
    2013
    Abstract
    An important aspect of corrosion prediction for oil/gas wells and pipelines is to obtain a realistic estimate of the corrosion rate. Corrosion rate prediction involves developing a predictive model that utilizes commonly available operational parameters, existing lab/field data, and theoretical models to obtain realistic assessments of corrosion rates. This study presents a new model to predict corrosion rates by using artificial neural network (ANN) systems. The values of pH, velocity, temperature, and partial pressure of the CO2 are input variables of the network and the rate of corrosion has been set as the network output. Among the 718 data sets, 503 of the data were implemented to find... 

    Pressure-transient analysis of bottomhole pressure and rate measurements by use of system-identification techniques

    , Article SPE Journal ; Volume 20, Issue 5 , October , 2015 , Pages 1005-1027 ; 1086055X (ISSN) Mansoori, M ; Van Den Hof, P. M. J ; Jansen, J. D ; Rashtchian, D ; Sharif University of Technology
    Society of Petroleum Engineers  2015
    Abstract
    This study presents a novel perspective on pressure-transient analysis (PTA) of downhole-pressure and flow-rate data by use of system-identification (SI) techniques as widely used in advanced process engineering. Key features of the paper are that it considers the classic PTA process from a system-theoretical perspective; derives the causal structure of the flow dynamics; proposes a method to deal with continuously varying pressure and flow-rate signals contaminated with correlated noise, which estimates physical reservoir parameters through a systematic matching procedure in the frequency domain; and can cope with arbitrary (i.e., not necessarily piecewise constant) flow-rate signals. To... 

    On the importance of gel rigidity and coverage in a smart water shutoff treatment in gas wells

    , Article Journal of Natural Gas Science and Engineering ; Volume 31 , 2016 , Pages 808-818 ; 18755100 (ISSN) Sharifpour, E ; Escrochi, M ; Riazi, M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    This paper addresses a conceptual study on different aspects of a novel smart treatment method for a relatively new challenge of saline water production from low permeability lenses of high flow gas wells. Selective sealing of such lenses along with minor effect on gas productivity usually faces practical difficulties due to the inherent permeability contrast. Engineered application of salt sensitive gellan biopolymer through a smart treatment scenario that includes a protective gas flow proved its ability for treating such challenge. This paper investigates the importance of the gel rigidity and its coverage in the smart treatment scenario through considering the brine salinity and the... 

    Non-Newtonian fluid flow dynamics in rotating annular media: Physics-based and data-driven modeling

    , Article Journal of Petroleum Science and Engineering ; Volume 185 , 2020 Ershadnia, R ; Amooie, M. A ; Shams, R ; Hajirezaie, S ; Liu, Y ; Jamshidi, S ; Soltanian, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    A thorough understanding and accurate prediction of non-Newtonian fluid flow dynamics in rotating annular media are of paramount importance to numerous engineering applications. This is in particular relevant to oil and gas industry where this type of flow could occur during, e.g., drilling, well completion, and enhanced oil recovery scenarios. Here, mathematically we report on physical-based (numerical) and data-driven (intelligent) modeling of three-dimensional laminar flow of non-Newtonian fluids driven by axial pressure gradient in annular media that consist of a coaxially rotating inner cylinder. We focus on the dynamics of pressure loss ratio (PLR)—the ratio of total pressure loss in... 

    Investigating the mechanism of water inflow in gas wells in fractured gas reservoirs and designing a controlling method

    , Article SPE Production and Operations Symposium, Proceedings ; Vol. 1, issue , May , 2012 , p. 323-340 ; ISBN: 9781613992012 Jafari, I ; Jamshidi, S ; Masihi, M ; Sharif University of Technology
    Abstract
    The coning phenomenon usually occurs in water and gas cap drive reservoirs. Water coning in Iranian hydrocarbon reservoirs is one of the most important problems that affects the cumulative production, operation costs and causes environmental problems. Before producing from a reservoir, its fluids are in equilibrium and their contact surfaces remain unchanged, but after starting production from the reservoir, when the viscous force overcome gravitational force in vertical direction, contact surfaces will displace and coning will occur. So, the production rates will be controlled in a range that prevents entering water and gas to the production well. For this reason, investigation and modeling... 

    Investigating the mechanism of water inflow in gas wells in fractured gas reservoirs and designing a controlling method

    , Article SPE Production and Operations Symposium, Proceedings ; Volume 1 , 2012 , Pages 323-340 ; 9781622761272 (ISBN) Jafari, I ; Jamshidi, S ; Masihi, M ; Sharif University of Technology
    SPE  2012
    Abstract
    The coning phenomenon usually occurs in water and gas cap drive reservoirs. Water coning in Iranian hydrocarbon reservoirs is one of the most important problems that affects the cumulative production, operation costs and causes environmental problems. Before producing from a reservoir, its fluids are in equilibrium and their contact surfaces remain unchanged, but after starting production from the reservoir, when the viscous force overcome gravitational force in vertical direction, contact surfaces will displace and coning will occur. So, the production rates will be controlled in a range that prevents entering water and gas to the production well. For this reason, investigation and modeling... 

    Failure analysis: Sulfide stress corrosion cracking and hydrogen-induced cracking of A216-WCC wellhead flow control valve body

    , Article Journal of Failure Analysis and Prevention ; Vol. 14, issue. 3 , 2014 , p. 376-383 Ziaei, S. M. R ; Kokabi A.H ; Mostowfi J ; Sharif University of Technology
    Abstract
    The wellhead flow control valve bodies which are the focal point of this failure case study were installed in some of the upstream facilities of Khangiran's sour gas wells. These valve bodies have been operating satisfactorily for 3 years in wet H2S environment before some pits and cracks were detected in all of them during the periodical technical inspections. One failed valve body was investigated by chemical and microstructural analytical techniques to find out the failure cause and provide preventive measures. The valve body alloy was A216-WCC cast carbon steel. During investigation many cracks were observed on the inner surface of the valve body grown from the surface pits. The results... 

    Experimental investigation of characteristic curve for gas-lift pump

    , Article Journal of Petroleum Science and Engineering ; Volume 62, Issue 1 , 2014 , Pages 156-170 ; ISSN: 09204105 Hanafizadeh, P ; Raffiee, A. H ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Using gas-liquid lifting pumps is a quite different technology for pumping two or three phase flows rather than other types of pumping systems. Therefore, finding performance characteristic chart for this type of pumping system seems to be necessary. In this type of pumping system, the liquid phase is pushed upward by the compressed air which has been injected in the bottom of upriser pipe of the pump. Therefore, compressed air acts as the driving force in gas lifting pumps instead of moving parts in ordinary pumps. It can be concluded that the definition of characteristic curve used for ordinary pump is not very appropriate for this type of pumping system. In this study, it has been... 

    Experimental determination of hydrate phase equilibrium curve for an Iranian sour gas condensate sample

    , Article Journal of Natural Gas Science and Engineering ; Volume 9 , November , 2012 , Pages 11-15 ; 18755100 (ISSN) Kamari, E ; Oyarhossein, M ; Sharif University of Technology
    2012
    Abstract
    Iran's proved natural gas reserves are the world's second largest. Mainly, because of climate changes and different reservoirs' characterizations, studying the behavior of production fluids and their transportation is essential. One of the main problems which occurs in the gas reservoirs is related to the hydrate formation while producing from a well, either in production strings or production lines (before and after choke). Effective parameters which influence the formation of hydrates are: high pressure, low temperature and water presence; and therefore, the high possibility of having this phenomenon in Iranian reservoirs is quite obvious especially in cold climates and for gas wells.... 

    Estimation of natural gas optimum allocation to consuming sectors in year 2025 in Iran

    , Article Energy Sources, Part B: Economics, Planning and Policy ; Volume 11, Issue 7 , 2016 , Pages 587-596 ; 15567249 (ISSN) Maroufmashat, A ; Sattari, S ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Due to a large number of rich natural gas reserves in Iran, and considering the acceptable income from the exports of oil products, the consumption of gas instead of oil products in different consuming sectors seems to be rational. Therefore, in this article, the allocation of natural gas to different sectors such as residential, industries, power plants, transportation, reinjection to oil wells, export, and so forth is estimated based on the three scenarios using a linear programming method for the year 2025 in Iran. The results indicate that if there is no planned consumption management, the allocation of gas in future years will certainly have deficiencies in some sectors in Iran.... 

    Effect of Fe-Containing supports prepared by a novel sol–gel method in the co methanation reaction: co elimination and synthetic natural gas production

    , Article Energy Technology ; Volume 7, Issue 10 , 2019 ; 21944288 (ISSN) Jalali, R ; Rezaei, M ; Nematollahi, B ; Baghalha, M ; Sharif University of Technology
    Wiley-VCH Verlag  2019
    Abstract
    Herein, the CO methanation reaction is studied over Ni/Fe–Al mixed oxides with various Fe and Al contents. The mesoporous nanocrystalline supports are prepared by a novel sol–gel process using propylene oxide as a gelation agent. The deposition–precipitation method is used for the deposition of nickel on the catalyst support. The samples are characterized by Brunauer–Emmett–Teller (BET), X-ray diffractometry (XRD), temperature programmed reduction (TPR), temperature programmed oxidation (TPO), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results indicate that increasing the iron content and reducing the Al percentage in the catalyst support reduces the... 

    Application of temperature transient analysis in well test interpretation for gas wells

    , Article Petroleum Engineers - SPE Asia Pacific Oil and Gas Conference and Exhibition 2007 "Resources, Professionalism, Technology: Time to Deliver"30 October 2007 through 1 November 2007Code 73703 ; Volume 2 , 2007 , Pages 643 - 655 ; 9781604238594 (ISBN) Bahrami, H ; Siavoshi, J ; Sharif University of Technology
    Abstract
    During transient tests, both pressure and temperature are changed depending on downhole flow rate. In gas producing wells, Joule-Thomson cooling and frictional heating effects are the main dynamic factors causing flowing bottomhole temperature to differ from the static formation temperature at that depth. When a gas well is shut in, JT cooling effect is vanished and this causes a sharp increase in sandface temperature. As effect of wellbore storage ends, wellbore temperature gradually cools down due to heat conduction with near wellbore region. This paper demonstrates a new technique for using temperature transient data in gas wells in order to determine end of wellbore storage. Also, effect... 

    Application of temperature transient analysis for welltest interpretation and well productivity evaluation

    , Article Society of Petroleum Engineers - SPE Asia Pacific Oil and Gas Conference and Exhibition, Jakarta, Indonesia,October 30–November 1, 2007 ; 2007 ; 9781613990407 (ISBN) Bahrami, N ; Siavoshi, J ; Sharif University of Technology
    2007
    Abstract
    During transient tests, both pressure and temperature are changed depending on downhole flow rate. In gas producing wells, Joule-Thomson cooling and frictional heating effects are the main dynamic factors causing flowing bottomhole temperature to differ from the static formation temperature at that depth. When a gas well is shut in, JT cooling effect is vanished and this causes a sharp increase in sandface temperature. As effect of wellbore storage ends, wellbore temperature gradually cools down due to heat conduction with near wellbore region. This paper demonstrates a new technique for using temperature transient data in gas wells in order to determine end of wellbore storage. Also, effect... 

    An overview to applicability of multilateral drilling in the Middle East Fields

    , Article Society of Petroleum Engineers - Offshore Europe Oil and Gas Conference and Exhibition 2009, OE 2009, 8 September 2009 through 11 September 2009, Aberdeen ; Volume 1 , 2009 , Pages 567-577 ; 9781615675821 (ISBN) Mirzaei Paiaman, A ; Moghadasi, J ; Sharif University of Technology
    Abstract
    There are several types of drilling methods to increase the productivity of a well, such as horizontal drilling, extended reach horizontal drilling and Multilateral (ML) drilling. It is thought that ML wells could be more economic with higher productivities than horizontal or extended reach horizontal wells. Advances in ML drilling promise reduced costs, greater flexibility and increased profit potential. In the last 20 years, thousands of ML wells have been drilled worldwide, but only a small percentage of the total number of wells is multilateral. The probable reason may be lack of concise information and misconceptions surrounding the costs and perceived risks. However, recent advances in... 

    A new method in well test interpretation using temperature transient analysis for gas wells

    , Article International Petroleum Technology Conference 2007, IPTC 2007, Dubai, 4 December 2007 through 6 December 2007 ; Volume 2 , 2007 , Pages 1151-1160 ; 9781615673360 (ISBN) Bahrami, H ; Siavoshi, J ; Sharif University of Technology
    Society of Petroleum Engineers  2007
    Abstract
    Interpretation of temperature logs has been done successfully in wells to identify water or gas entries location, detect casing leaks, and evaluate cement placement. This paper shows how knowledge of the Joule-Thomson cooling effect and frictional heating effect can be applied for well test interpretation. Many analysts rely on pressure derivative curve to diagnose wellbore storage period and radial flow regime on pressure transient data. However, there are field examples that flow regimes can't be accurately determined. During transient tests, both pressure and temperature are changed depending on downhole flow rate. In gas producing wells, Joule-Thomson cooling and frictional heating... 

    A geomechanical approach to casing collapse prediction in oil and gas wells aided by machine learning

    , Article Journal of Petroleum Science and Engineering ; Volume 196 , 2021 ; 09204105 (ISSN) Mohamadian, N ; Ghorbani, H ; Wood, D. A ; Mehrad, M ; Davoodi, S ; Rashidi, S ; Soleimanian, A ; Shahvand, A. K ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The casing-collapse hazard is one that drilling engineers seek to mitigate with careful well design and operating procedures. However, certain rock formations and their fluid pressure and stress conditions are more prone to casing-collapse risks than others. The Gachsaran Formation in south west Iran, is one such formation, central to oil and gas resource exploration and development in the Zagros region and consisting of complex alternations of anhydrite, marl and salt. The casing-collapse incidents in this formation have resulted over decades in substantial lost production and remedial costs to mitigate the issues surrounding wells with failed casing string. High and vertically-varying... 

    A general multi-scale modeling framework for two-phase simulation of multi-stream plate-fin heat exchangers

    , Article International Journal of Heat and Mass Transfer ; Volume 156 , 2020 Niroomand, R ; Saidi, M. H ; Hannani, S. K ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Compact heat exchangers are among the vital components used in various industries. In this study, a general framework has been developed with a multi-scale point of view for three-dimensional simulation of multi-stream plate-fin heat exchangers. The most important features in the MSPFHEs simulation, such as phase change phenomena, multi-component mixtures, multiple streams, transversal, lateral and longitudinal conduction, non-uniformity of inlet flow, variable fluid properties, and heat leakage are simultaneously considered in this model. The modular form of the model structure has facilitated layer-by-layer simulation of cross flow heat exchangers as well as parallel flow ones. Our model... 

    Adaptive neuro-fuzzy algorithm applied to predict and control multi-phase flow rates through wellhead chokes

    , Article Flow Measurement and Instrumentation ; Volume 76 , 2020 Ghorbani, H ; Wood, D. A ; Mohamadian, N ; Rashidi, S ; Davoodi, S ; Soleimanian, A ; Kiani Shahvand, A ; Mehrad, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    A Takagi-Sugeno adaptive neuro-fuzzy inference system (TSFIS) model is developed and applied to a dataset of wellhead flow-test data for the Resalat oil field located offshore southern Iran, the objective is to assist in the prediction and control of multi-phase flow rates of oil and gas through the wellhead chokes. For this purpose, 182 test data points (Appendix 1) related to the Resalat field are evaluated. In order to predict production flow rate (QL) expressed as stock-tank barrels per day (STB/D), this dataset includes four selected input variables: upstream pressure (Pwh); wellhead choke sizes (D64); gas to liquid ratio (GLR); and, base solids and water including some water-soluble...